Commit 30fd0a3b authored by Youness Alaoui's avatar Youness Alaoui

Adding sha1 and md5 implementation and remove the openssl use of them

parent 6e753679
...@@ -20,6 +20,8 @@ libstun_la_SOURCES = constants.h \ ...@@ -20,6 +20,8 @@ libstun_la_SOURCES = constants.h \
stunmessage.c stunmessage.h \ stunmessage.c stunmessage.h \
stun5389.c stun5389.h \ stun5389.c stun5389.h \
stuncrc32.c stuncrc32.h \ stuncrc32.c stuncrc32.h \
sha1.c sha1.h \
md5.c md5.h \
stunhmac.c stunhmac.h \ stunhmac.c stunhmac.h \
utils.c utils.h \ utils.c utils.h \
usages/ice.c usages/ice.h \ usages/ice.c usages/ice.h \
......
/*
* MD5 hash implementation and interface functions
* Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "md5.h"
#include <string.h>
/* ===== start - public domain MD5 implementation ===== */
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
static void MD5Transform(uint32_t buf[4], uint32_t const in[16]);
#if __BYTE_ORDER != __BIG_ENDIAN
#define byteReverse(buf, len) /* Nothing */
#else
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse(unsigned char *buf, unsigned longs)
{
uint32_t t;
do {
t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(uint32_t *) buf = t;
buf += 4;
} while (--longs);
}
#endif
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void MD5Init(MD5_CTX *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t) {
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *) ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((uint32_t *) ctx->in)[14] = ctx->bits[0];
((uint32_t *) ctx->in)[15] = ctx->bits[1];
MD5Transform(ctx->buf, (uint32_t *) ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32_t buf[4], uint32_t const in[16])
{
register uint32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/* ===== end - public domain MD5 implementation ===== */
/*
* MD5 hash implementation and interface functions
* Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#ifndef MD5_H
#define MD5_H
#ifdef _WIN32
#include "win32_common.h"
#else
#include <stdint.h>
#endif
#include <stddef.h>
#define MD5_MAC_LEN 16
struct MD5Context {
uint32_t buf[4];
uint32_t bits[2];
uint8_t in[64];
};
typedef struct MD5Context MD5_CTX;
void MD5Init(MD5_CTX *context);
void MD5Update(MD5_CTX *context, unsigned char const *buf, unsigned len);
void MD5Final(unsigned char digest[16], MD5_CTX *context);
#endif /* MD5_H */
/*
* SHA1 hash implementation and interface functions
* Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include "sha1.h"
#include "utils.h"
#include <string.h>
/* ===== start - public domain SHA1 implementation ===== */
/*
SHA-1 in C
By Steve Reid <sreid@sea-to-sky.net>
100% Public Domain
-----------------
Modified 7/98
By James H. Brown <jbrown@burgoyne.com>
Still 100% Public Domain
Corrected a problem which generated improper hash values on 16 bit machines
Routine SHA1Update changed from
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
len)
to
void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
long len)
The 'len' parameter was declared an int which works fine on 32 bit machines.
However, on 16 bit machines an int is too small for the shifts being done
against
it. This caused the hash function to generate incorrect values if len was
greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
Since the file IO in main() reads 16K at a time, any file 8K or larger would
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
"a"s).
I also changed the declaration of variables i & j in SHA1Update to
unsigned long from unsigned int for the same reason.
These changes should make no difference to any 32 bit implementations since
an
int and a long are the same size in those environments.
--
I also corrected a few compiler warnings generated by Borland C.
1. Added #include <process.h> for exit() prototype
2. Removed unused variable 'j' in SHA1Final
3. Changed exit(0) to return(0) at end of main.
ALL changes I made can be located by searching for comments containing 'JHB'
-----------------
Modified 8/98
By Steve Reid <sreid@sea-to-sky.net>
Still 100% public domain
1- Removed #include <process.h> and used return() instead of exit()
2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
-----------------
Modified 4/01
By Saul Kravitz <Saul.Kravitz@celera.com>
Still 100% PD
Modified to run on Compaq Alpha hardware.
-----------------
Modified 4/01
By Jouni Malinen <j@w1.fi>
Minor changes to match the coding style used in Dynamics.
Modified September 24, 2004
By Jouni Malinen <j@w1.fi>
Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.
*/
/*
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#if __BYTE_ORDER != __BIG_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
(rol(block->l[i], 8) & 0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R1(v,w,x,y,z,i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
w = rol(w, 30);
#define R2(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
#define R3(v,w,x,y,z,i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
w = rol(w, 30);
#define R4(v,w,x,y,z,i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
w=rol(w, 30);
static void SHA1Transform(uint32_t state[5], const unsigned char buffer[64]);
/* Hash a single 512-bit block. This is the core of the algorithm. */
static void SHA1Transform(uint32_t state[5], const unsigned char buffer[64])
{
uint32_t a, b, c, d, e;
typedef union {
unsigned char c[64];
uint32_t l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
uint32_t workspace[16];
block = (CHAR64LONG16 *) workspace;
memcpy(block, buffer, 64);
block = (CHAR64LONG16 *) buffer;
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
memset(block, 0, 64);
}
/* SHA1Init - Initialize new context */
void SHA1Init(SHA1_CTX* context)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void SHA1Update(SHA1_CTX* context, const void *_data, uint32_t len)
{
uint32_t i, j;
const unsigned char *data = _data;
j = (context->count[0] >> 3) & 63;
if ((context->count[0] += len << 3) < (len << 3))
context->count[1]++;
context->count[1] += (len >> 29);
if ((j + len) > 63) {
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
{
uint32_t i;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)
((context->count[(i >= 4 ? 0 : 1)] >>
((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, (unsigned char *) "\200", 1);
while ((context->count[0] & 504) != 448) {
SHA1Update(context, (unsigned char *) "\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform()
*/
for (i = 0; i < 20; i++) {
digest[i] = (unsigned char)
((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
255);
}
/* Wipe variables */
i = 0;
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(finalcount, 0, 8);
}
/* ===== end - public domain SHA1 implementation ===== */
/**
* hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
* @key: Key for HMAC operations
* @key_len: Length of the key in bytes
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash (20 bytes)
*/
void hmac_sha1_vector(const uint8_t *key, size_t key_len, size_t num_elem,
const uint8_t *addr[], const size_t *len, uint8_t *mac)
{
unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
unsigned char tk[20];
const uint8_t *_addr[6];
size_t _len[6], i;
if (num_elem > 5) {
/*
* Fixed limit on the number of fragments to avoid having to
* allocate memory (which could fail).
*/
return;
}
/* if key is longer than 64 bytes reset it to key = SHA1(key) */
if (key_len > 64) {
sha1_vector(1, &key, &key_len, tk);
key = tk;
key_len = 20;
}
/* the HMAC_SHA1 transform looks like:
*
* SHA1(K XOR opad, SHA1(K XOR ipad, text))
*
* where K is an n byte key
* ipad is the byte 0x36 repeated 64 times
* opad is the byte 0x5c repeated 64 times
* and text is the data being protected */
/* start out by storing key in ipad */
memset(k_pad, 0, sizeof(k_pad));
memcpy(k_pad, key, key_len);
/* XOR key with ipad values */
for (i = 0; i < 64; i++)
k_pad[i] ^= 0x36;
/* perform inner SHA1 */
_addr[0] = k_pad;
_len[0] = 64;
for (i = 0; i < num_elem; i++) {
_addr[i + 1] = addr[i];
_len[i + 1] = len[i];
}
sha1_vector(1 + num_elem, _addr, _len, mac);
memset(k_pad, 0, sizeof(k_pad));
memcpy(k_pad, key, key_len);
/* XOR key with opad values */
for (i = 0; i < 64; i++)
k_pad[i] ^= 0x5c;
/* perform outer SHA1 */
_addr[0] = k_pad;
_len[0] = 64;
_addr[1] = mac;
_len[1] = SHA1_MAC_LEN;
sha1_vector(2, _addr, _len, mac);
}
/**
* hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
* @key: Key for HMAC operations
* @key_len: Length of the key in bytes
* @data: Pointers to the data area
* @data_len: Length of the data area
* @mac: Buffer for the hash (20 bytes)
*/
void hmac_sha1(const uint8_t *key, size_t key_len,
const uint8_t *data, size_t data_len, uint8_t *mac)
{
hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}
/**
* sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
* @key: Key for PRF
* @key_len: Length of the key in bytes
* @label: A unique label for each purpose of the PRF
* @data: Extra data to bind into the key
* @data_len: Length of the data
* @buf: Buffer for the generated pseudo-random key
* @buf_len: Number of bytes of key to generate
*
* This function is used to derive new, cryptographically separate keys from a
* given key (e.g., PMK in IEEE 802.11i).
*/
void sha1_prf(const uint8_t *key, size_t key_len, const char *label,
const uint8_t *data, size_t data_len, uint8_t *buf, size_t buf_len)
{
uint8_t counter = 0;
size_t pos, plen;
uint8_t hash[SHA1_MAC_LEN];
size_t label_len = strlen(label) + 1;
const unsigned char *addr[3];
size_t len[3];
addr[0] = (uint8_t *) label;
len[0] = label_len;
addr[1] = data;
len[1] = data_len;
addr[2] = &counter;
len[2] = 1;
pos = 0;
while (pos < buf_len) {
plen = buf_len - pos;
if (plen >= SHA1_MAC_LEN) {
hmac_sha1_vector(key, key_len, 3, addr, len, &buf[pos]);
pos += SHA1_MAC_LEN;
} else {
hmac_sha1_vector(key, key_len, 3, addr, len, hash);
memcpy(&buf[pos], hash, plen);
break;
}
counter++;
}
}
/**
* sha1_vector - SHA-1 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
*/
void sha1_vector(size_t num_elem, const uint8_t *addr[], const size_t *len,
uint8_t *mac)
{
SHA1_CTX ctx;
size_t i;
SHA1Init(&ctx);
for (i = 0; i < num_elem; i++)
SHA1Update(&ctx, addr[i], len[i]);
SHA1Final(mac, &ctx);
}
/*
* SHA1 hash implementation and interface functions
* Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#ifndef SHA1_H
#define SHA1_H
#ifdef _WIN32
#include "win32_common.h"
#else
#include <stdint.h>
#endif
#include <stddef.h>
#define SHA1_MAC_LEN 20
struct SHA1Context {
uint32_t state[5];
uint32_t count[2];
unsigned char buffer[64];
};
typedef struct SHA1Context SHA1_CTX;
void SHA1Init(SHA1_CTX *context);
void SHA1Update(SHA1_CTX *context, const void *data, uint32_t len);
void SHA1Final(unsigned char digest[20], SHA1_CTX *context);
void sha1_vector(size_t num_elem, const uint8_t *addr[], const size_t *len,
uint8_t *mac);
void hmac_sha1_vector(const uint8_t *key, size_t key_len, size_t num_elem,
const uint8_t *addr[], const size_t *len, uint8_t *mac);
void hmac_sha1(const uint8_t *key, size_t key_len,
const uint8_t *data, size_t data_len, uint8_t *mac);
void sha1_prf(const uint8_t *key, size_t key_len, const char *label,
const uint8_t *data, size_t data_len, uint8_t *buf, size_t buf_len);
#endif /* SHA1_H */
...@@ -44,8 +44,8 @@ ...@@ -44,8 +44,8 @@
#define WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN
#endif #endif
#include <openssl/evp.h> #include <sha1.h>
#include <openssl/hmac.h> #include <md5.h>
#include <openssl/rand.h> #include <openssl/rand.h>
#include "stunmessage.h" #include "stunmessage.h"
...@@ -57,31 +57,33 @@ ...@@ -57,31 +57,33 @@
void stun_sha1 (const uint8_t *msg, size_t len, uint8_t *sha, void stun_sha1 (const uint8_t *msg, size_t len, uint8_t *sha,
const void *key, size_t keylen, int padding) const void *key, size_t keylen, int padding)
{ {
HMAC_CTX ctx;
uint16_t fakelen = htons (len - 20u); uint16_t fakelen = htons (len - 20u);
const uint8_t *vector[4];
size_t lengths[4];
uint8_t pad_char[64] = {0};
size_t num_elements;
assert (len >= 44u); assert (len >= 44u);
HMAC_CTX_init (&ctx); vector[0] = msg;
HMAC_Init_ex (&ctx, key, keylen, EVP_sha1 (), NULL); lengths[0] = 2;
HMAC_Update (&ctx, msg, 2); vector[1] = (const uint8_t *)&fakelen;
HMAC_Update (&ctx, (const uint8_t *)&fakelen, 2); lengths[1] = 2;
/* first 4 bytes done, last 24 bytes not summed */ vector[2] = msg + 4;
HMAC_Update (&ctx, msg + 4, len - 28u); lengths[2] = len - 28;
num_elements = 3;
/* RFC 3489 specifies that the message's size should be 64 bytes, /* RFC 3489 specifies that the message's size should be 64 bytes,
and \x00 padding should be done */ and \x00 padding should be done */
if (padding && ((len - 24) % 64) > 0) { if (padding && ((len - 24) % 64) > 0) {
uint16_t pad_size = 64 - ((len - 24) % 64); uint16_t pad_size = 64 - ((len - 24) % 64);
int i;
uint8_t pad_char[1] = {0}; vector[3] = pad_char;
for (i = 0; i < pad_size; i++) { lengths[3] = pad_size;
HMAC_Update (&ctx, pad_char, 1); num_elements++;
}
} }
HMAC_Final (&ctx, sha, NULL); hmac_sha1_vector(key, keylen, num_elements, vector, lengths, sha);
HMAC_CTX_cleanup (&ctx);
} }
static const uint8_t *priv_trim_var (const uint8_t *var, size_t *var_len) static const uint8_t *priv_trim_var (const uint8_t *var, size_t *var_len)
...@@ -106,19 +108,19 @@ void stun_hash_creds (const uint8_t *realm, size_t realm_len, ...@@ -106,19 +108,19 @@ void stun_hash_creds (const uint8_t *realm, size_t realm_len,
const uint8_t *password, size_t password_len, const uint8_t *password, size_t password_len,
unsigned char md5[16]) unsigned char md5[16])
{ {
EVP_MD_CTX ctx; MD5_CTX ctx;
const uint8_t *username_trimmed = priv_trim_var (username, &username_len); const uint8_t *username_trimmed = priv_trim_var (username, &username_len);
const uint8_t *password_trimmed = priv_trim_var (password, &password_len); const uint8_t *password_trimmed = priv_trim_var (password, &password_len);
const uint8_t *realm_trimmed = priv_trim_var (realm, &realm_len); const uint8_t *realm_trimmed = priv_trim_var (realm, &realm_len);
const uint8_t *colon = (uint8_t *)":";
EVP_MD_CTX_init (&ctx);
EVP_DigestInit_ex (&ctx, EVP_md5 (), NULL); MD5Init (&ctx);
EVP_DigestUpdate (&ctx, username_trimmed, username_len); MD5Update (&ctx, username_trimmed, username_len);
EVP_DigestUpdate (&ctx, ":", 1); MD5Update (&ctx, colon, 1);
EVP_DigestUpdate (&ctx, realm_trimmed, realm_len); MD5Update (&ctx, realm_trimmed, realm_len);
EVP_DigestUpdate (&ctx, ":", 1); MD5Update (&ctx, colon, 1);
EVP_DigestUpdate (&ctx, password_trimmed, password_len); MD5Update (&ctx, password_trimmed, password_len);
EVP_DigestFinal (&ctx, md5, NULL); MD5Final (md5, &ctx);
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment