Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
Actor Framework
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Metrics
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
cpp-libs
Actor Framework
Commits
fb863af3
Commit
fb863af3
authored
Dec 08, 2017
by
Dominik Charousset
Committed by
Dominik Charousset
Feb 06, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Improve streaming unit test
parent
07734fb0
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
285 additions
and
41 deletions
+285
-41
libcaf_core/test/streaming_classes.cpp
libcaf_core/test/streaming_classes.cpp
+207
-41
libcaf_core/test/time_emitter.cpp
libcaf_core/test/time_emitter.cpp
+78
-0
No files found.
libcaf_core/test/streaming_classes.cpp
View file @
fb863af3
...
...
@@ -32,6 +32,7 @@
#define CAF_SUITE streaming_classes
#include <memory>
#include <numeric>
#include "caf/actor_system.hpp"
#include "caf/actor_system_config.hpp"
...
...
@@ -62,10 +63,12 @@
#include "caf/intrusive/wdrr_dynamic_multiplexed_queue.hpp"
#include "caf/intrusive/wdrr_fixed_multiplexed_queue.hpp"
#include "caf/detail/gcd.hpp"
#include "caf/detail/overload.hpp"
#include "caf/detail/stream_sink_impl.hpp"
#include "caf/detail/stream_source_impl.hpp"
#include "caf/detail/stream_stage_impl.hpp"
#include "caf/detail/tick_emitter.hpp"
using
std
::
vector
;
...
...
@@ -162,7 +165,7 @@ struct inner_dmsg_queue_policy : policy_base {
}
task_size_type
operator
()(
const
downstream_msg
::
batch
&
x
)
const
{
CAF_
REQUIRE_NOT_EQUAL
(
x
.
xs_size
,
0
);
CAF_
ASSERT
(
x
.
xs_size
>
0
);
return
static_cast
<
task_size_type
>
(
x
.
xs_size
);
}
...
...
@@ -220,23 +223,84 @@ using mboxqueue = wdrr_fixed_multiplexed_queue<mboxpolicy, default_queue,
// -- entity -------------------------------------------------------------------
class
abstract_clock
{
public:
// -- member types -----------------------------------------------------------
using
time_point
=
std
::
chrono
::
steady_clock
::
time_point
;
// -- constructors, destructors, and assignment operators --------------------
virtual
~
abstract_clock
()
{
// nop
}
virtual
time_point
now
()
const
noexcept
=
0
;
};
class
fake_clock
:
public
abstract_clock
{
public:
fake_clock
(
time_point
*
global_time
)
:
global_time_
(
global_time
)
{
// nop
}
time_point
now
()
const
noexcept
override
{
return
*
global_time_
;
}
private:
time_point
*
global_time_
;
};
class
steady_clock
:
public
abstract_clock
{
public:
time_point
now
()
const
noexcept
override
{
return
std
::
chrono
::
steady_clock
::
now
();
}
};
class
entity
:
public
extend
<
local_actor
,
entity
>::
with
<
mixin
::
sender
>
{
public:
// -- member types -----------------------------------------------------------
/// Base type.
using
super
=
extend
<
local_actor
,
entity
>::
with
<
mixin
::
sender
>
;
/// Defines the messaging interface.
using
signatures
=
none_t
;
/// Defines the container for storing message handlers.
using
behavior_type
=
behavior
;
entity
(
actor_config
&
cfg
,
const
char
*
cstr_name
)
/// The type of a single tick.
using
clock_type
=
detail
::
tick_emitter
::
clock_type
;
/// The type of a single tick.
using
time_point
=
clock_type
::
time_point
;
/// Difference between two points in time.
using
duration_type
=
time_point
::
duration
;
/// The type of a single tick.
using
tick_type
=
long
;
// -- constructors, destructors, and assignment operators --------------------
entity
(
actor_config
&
cfg
,
const
char
*
cstr_name
,
time_point
*
global_time
,
duration_type
credit_interval
,
duration_type
force_batches_interval
)
:
super
(
cfg
),
mbox
(
mboxpolicy
{},
default_queue_policy
{},
nullptr
,
dmsg_queue_policy
{},
default_queue_policy
{}),
mbox
(
mboxpolicy
{},
default_queue_policy
{},
nullptr
,
dmsg_queue_policy
{},
default_queue_policy
{}),
name_
(
cstr_name
),
next_slot_
(
static_cast
<
stream_slot
>
(
id
()))
{
// nop
next_slot_
(
static_cast
<
stream_slot
>
(
id
())),
global_time_
(
global_time
),
tick_emitter_
(
global_time
==
nullptr
?
clock_type
::
now
()
:
*
global_time
)
{
auto
cycle
=
detail
::
gcd
(
credit_interval
.
count
(),
force_batches_interval
.
count
());
ticks_per_force_batches_interval
=
force_batches_interval
.
count
()
/
cycle
;
ticks_per_credit_interval
=
credit_interval
.
count
()
/
cycle
;
tick_emitter_
.
interval
(
duration_type
{
cycle
});
}
void
enqueue
(
mailbox_element_ptr
what
,
execution_unit
*
)
override
{
...
...
@@ -355,19 +419,16 @@ public:
// mgr->out().add_path(id, hs.prev_stage);
managers_
.
emplace
(
id
,
mgr
);
// Create a new queue in the mailbox for incoming traffic.
auto
ip
=
new
inbound_path
(
mgr
,
id
,
hs
.
prev_stage
);
get
<
2
>
(
mbox
.
queues
())
.
queues
()
.
emplace
(
slot
,
std
::
unique_ptr
<
inbound_path
>
{
new
inbound_path
(
mgr
,
id
,
hs
.
prev_stage
)});
// Acknowledge stream.
send
(
hs
.
prev_stage
,
make
<
upstream_msg
::
ack_open
>
(
id
.
invert
(),
address
(),
address
(),
ctrl
(),
10
,
10
,
false
));
.
emplace
(
slot
,
std
::
unique_ptr
<
inbound_path
>
{
ip
});
ip
->
emit_ack_open
(
this
,
actor_cast
<
actor_addr
>
(
hs
.
original_stage
),
false
);
}
void
operator
()(
stream_slots
slots
,
actor_addr
&
sender
,
upstream_msg
::
ack_open
&
x
)
{
TRACE
(
name_
,
ack_
handshake
,
CAF_ARG
(
slots
),
TRACE
(
name_
,
ack_
open
,
CAF_ARG
(
slots
),
CAF_ARG2
(
"sender"
,
name_of
(
x
.
rebind_to
)),
CAF_ARG
(
x
));
// Get the manager for that stream.
auto
i
=
pending_managers_
.
find
(
slots
.
receiver
);
...
...
@@ -388,7 +449,7 @@ public:
void
operator
()(
stream_slots
input_slots
,
actor_addr
&
sender
,
upstream_msg
::
ack_batch
&
x
)
{
TRACE
(
name_
,
ack_batch
,
CAF_ARG
(
input_slots
),
CAF_ARG2
(
"sender"
,
name_of
(
sender
)));
CAF_ARG2
(
"sender"
,
name_of
(
sender
))
,
CAF_ARG
(
x
)
);
// Get the manager for that stream.
auto
i
=
managers_
.
find
(
input_slots
);
CAF_REQUIRE_NOT_EQUAL
(
i
,
managers_
.
end
());
...
...
@@ -408,6 +469,32 @@ public:
}
}
void
advance_time
()
{
auto
cycle
=
std
::
chrono
::
milliseconds
(
100
);
auto
desired_batch_complexity
=
std
::
chrono
::
microseconds
(
50
);
auto
f
=
[
&
](
tick_type
x
)
{
if
(
x
%
ticks_per_force_batches_interval
==
0
)
{
// Force batches on all output paths.
for
(
auto
&
kvp
:
managers_
)
kvp
.
second
->
out
().
force_emit_batches
();
}
if
(
x
%
ticks_per_credit_interval
==
0
)
{
// Fill credit on each input path up to 30.
auto
&
qs
=
get
<
2
>
(
mbox
.
queues
()).
queues
();
for
(
auto
&
kvp
:
qs
)
{
auto
inptr
=
kvp
.
second
.
policy
().
handler
.
get
();
inptr
->
emit_ack_batch
(
this
,
kvp
.
second
.
total_task_size
(),
cycle
,
desired_batch_complexity
);
}
}
};
tick_emitter_
.
update
(
now
(),
f
);
}
time_point
now
()
{
return
global_time_
==
nullptr
?
clock_type
::
now
()
:
*
global_time_
;
}
// -- member variables -------------------------------------------------------
mboxqueue
mbox
;
...
...
@@ -417,6 +504,11 @@ public:
stream_manager_ptr
forwarder
;
std
::
map
<
stream_slots
,
stream_manager_ptr
>
managers_
;
std
::
map
<
stream_slot
,
stream_manager_ptr
>
pending_managers_
;
tick_type
ticks_per_force_batches_interval
;
tick_type
ticks_per_credit_interval
;
time_point
*
global_time_
;
detail
::
tick_emitter
tick_emitter_
;
};
struct
msg_visitor
{
...
...
@@ -477,16 +569,10 @@ struct msg_visitor {
auto
&
dm
=
x
.
content
().
get_mutable_as
<
downstream_msg
>
(
0
);
auto
f
=
detail
::
make_overload
(
[
&
](
downstream_msg
::
batch
&
y
)
{
TRACE
(
self
->
name
(),
batch
,
CAF_ARG
(
y
.
xs
));
inptr
->
mgr
->
handle
(
inptr
,
y
);
inptr
->
mgr
->
generate_messages
();
inptr
->
mgr
->
push
();
if
(
!
inptr
->
mgr
->
done
())
{
auto
to
=
inptr
->
hdl
->
get
();
to
->
eq_impl
(
make_message_id
(),
self
->
ctrl
(),
nullptr
,
make
<
upstream_msg
::
ack_batch
>
(
dm
.
slots
.
invert
(),
self
->
address
(),
10
,
10
,
y
.
id
));
}
else
{
TRACE
(
self
->
name
(),
batch
,
CAF_ARG2
(
"size"
,
y
.
xs_size
),
CAF_ARG2
(
"remaining_credit"
,
inptr
->
assigned_credit
-
y
.
xs_size
));
inptr
->
handle
(
y
);
if
(
inptr
->
mgr
->
done
())
{
CAF_MESSAGE
(
self
->
name
()
<<
" is done receiving and closes its manager"
);
inptr
->
mgr
->
close
();
...
...
@@ -501,14 +587,26 @@ struct msg_visitor {
i
->
second
->
handle
(
inptr
,
y
);
q
.
policy
().
handler
.
reset
();
qs
.
erase_later
(
slots
.
receiver
);
self
->
managers_
.
erase
(
i
);
if
(
!
i
->
second
->
done
())
{
self
->
managers_
.
erase
(
i
);
}
else
{
// Close the manager and remove it on all registered slots.
auto
mgr
=
i
->
second
;
mgr
->
close
();
auto
j
=
self
->
managers_
.
begin
();
while
(
j
!=
self
->
managers_
.
end
())
{
if
(
j
->
second
==
mgr
)
j
=
self
->
managers_
.
erase
(
j
);
else
++
j
;
}
}
return
intrusive
::
task_result
::
resume
;
},
[](
downstream_msg
::
forced_close
&
)
{
CAF_FAIL
(
"did not expect downstream_msg::forced_close"
);
return
intrusive
::
task_result
::
stop
;
}
);
});
return
visit
(
f
,
dm
.
content
);
}
...
...
@@ -520,6 +618,20 @@ struct msg_visitor {
// -- fixture ------------------------------------------------------------------
struct
fixture
{
struct
timing_config
{
using
clock_type
=
std
::
chrono
::
steady_clock
;
clock_type
::
time_point
global_time
;
clock_type
::
duration
credit_interval
=
std
::
chrono
::
milliseconds
(
100
);
clock_type
::
duration
force_batches_interval
=
std
::
chrono
::
milliseconds
(
50
);
clock_type
::
duration
step
=
force_batches_interval
;
};
timing_config
tc
;
actor_system_config
cfg
;
actor_system
sys
{
cfg
};
actor
alice_hdl
;
...
...
@@ -530,9 +642,11 @@ struct fixture {
entity
&
bob
;
entity
&
carl
;
static
actor
spawn
(
actor_system
&
sys
,
actor_id
id
,
const
char
*
name
)
{
static
actor
spawn
(
actor_system
&
sys
,
actor_id
id
,
const
char
*
name
,
timing_config
&
tc
)
{
actor_config
conf
;
return
make_actor
<
entity
>
(
id
,
node_id
{},
&
sys
,
conf
,
name
);
return
make_actor
<
entity
>
(
id
,
node_id
{},
&
sys
,
conf
,
name
,
&
tc
.
global_time
,
tc
.
credit_interval
,
tc
.
force_batches_interval
);
}
static
entity
&
fetch
(
const
actor
&
hdl
)
{
...
...
@@ -540,9 +654,9 @@ struct fixture {
}
fixture
()
:
alice_hdl
(
spawn
(
sys
,
0
,
"alice"
)),
bob_hdl
(
spawn
(
sys
,
1
,
"bob"
)),
carl_hdl
(
spawn
(
sys
,
2
,
"carl"
)),
:
alice_hdl
(
spawn
(
sys
,
0
,
"alice"
,
tc
)),
bob_hdl
(
spawn
(
sys
,
1
,
"bob"
,
tc
)),
carl_hdl
(
spawn
(
sys
,
2
,
"carl"
,
tc
)),
alice
(
fetch
(
alice_hdl
)),
bob
(
fetch
(
bob_hdl
)),
carl
(
fetch
(
carl_hdl
))
{
...
...
@@ -567,6 +681,38 @@ struct fixture {
for
(
auto
&
f
:
fs
)
f
.
self
->
mbox
.
new_round
(
1
,
f
);
}
template
<
class
...
Ts
>
void
next_cycle
(
Ts
&
...
xs
)
{
entity
*
es
[]
=
{
&
xs
...};
CAF_MESSAGE
(
"advance clock by "
<<
tc
.
credit_interval
.
count
()
<<
"ns"
);
tc
.
global_time
+=
tc
.
credit_interval
;
for
(
auto
e
:
es
)
e
->
advance_time
();
}
template
<
class
F
,
class
...
Ts
>
void
loop_until
(
F
pred
,
Ts
&
...
xs
)
{
entity
*
es
[]
=
{
&
xs
...};
msg_visitor
fs
[]
=
{{
&
xs
}...};
auto
mailbox_empty
=
[](
msg_visitor
&
x
)
{
return
x
.
self
->
mbox
.
empty
();
};
do
{
while
(
!
std
::
all_of
(
std
::
begin
(
fs
),
std
::
end
(
fs
),
mailbox_empty
))
for
(
auto
&
f
:
fs
)
f
.
self
->
mbox
.
new_round
(
1
,
f
);
CAF_MESSAGE
(
"advance clock by "
<<
tc
.
step
.
count
()
<<
"ns"
);
tc
.
global_time
+=
tc
.
step
;
for
(
auto
e
:
es
)
e
->
advance_time
();
}
while
(
!
pred
());
}
bool
done_streaming
()
{
entity
*
es
[]
=
{
&
alice
,
&
bob
,
&
carl
};
return
std
::
all_of
(
std
::
begin
(
es
),
std
::
end
(
es
),
[](
entity
*
e
)
{
return
e
->
managers_
.
empty
();
});
}
};
vector
<
int
>
make_iota
(
int
first
,
int
last
)
{
...
...
@@ -581,28 +727,48 @@ vector<int> make_iota(int first, int last) {
CAF_TEST_FIXTURE_SCOPE
(
queue_multiplexing_tests
,
fixture
)
CAF_TEST
(
depth_2_pipeline
)
{
CAF_TEST
(
depth_2_pipeline
_single_round
)
{
alice
.
start_streaming
(
bob
,
30
);
loop
(
alice
,
bob
);
next_cycle
(
alice
,
bob
);
// a single credit round is enough
loop
(
alice
,
bob
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
30
));
}
CAF_TEST
(
depth_3_pipeline
)
{
CAF_TEST
(
depth_2_pipeline_multiple_rounds
)
{
constexpr
size_t
num_messages
=
200000
;
alice
.
start_streaming
(
bob
,
num_messages
);
loop_until
([
&
]
{
return
done_streaming
();
},
alice
,
bob
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
num_messages
));
}
CAF_TEST
(
depth_3_pipeline_single_round
)
{
bob
.
forward_to
(
carl
);
alice
.
start_streaming
(
bob
,
30
);
loop
(
alice
,
bob
,
carl
);
next_cycle
(
alice
,
bob
,
carl
);
// a single credit round is enough
loop
(
alice
,
bob
,
carl
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
30
));
CAF_CHECK_EQUAL
(
carl
.
data
,
make_iota
(
0
,
30
));
}
CAF_TEST
(
depth_3_pipeline_multiple_rounds
)
{
constexpr
size_t
num_messages
=
200000
;
bob
.
forward_to
(
carl
);
alice
.
start_streaming
(
bob
,
110
);
alice
.
start_streaming
(
bob
,
num_messages
);
CAF_MESSAGE
(
"loop over alice and bob until bob is congested"
);
loop
(
alice
,
bob
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
30
));
CAF_CHECK_NOT_EQUAL
(
bob
.
data
.
size
(),
0u
);
CAF_CHECK_EQUAL
(
carl
.
data
.
size
(),
0u
);
CAF_MESSAGE
(
"loop over bob and carl until bob finsihed sending"
);
// bob has one batch from alice in its mailbox that bob will read when
// becoming uncongested again
loop
(
bob
,
carl
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
40
));
CAF_CHECK_EQUAL
(
carl
.
data
,
make_iota
(
0
,
40
));
CAF_CHECK_EQUAL
(
bob
.
data
.
size
(),
carl
.
data
.
size
());
CAF_MESSAGE
(
"loop over all until done"
);
loop
(
alice
,
bob
,
carl
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
110
));
CAF_CHECK_EQUAL
(
carl
.
data
,
make_iota
(
0
,
110
));
loop
_until
([
&
]
{
return
done_streaming
();
},
alice
,
bob
,
carl
);
CAF_CHECK_EQUAL
(
bob
.
data
,
make_iota
(
0
,
num_messages
));
CAF_CHECK_EQUAL
(
carl
.
data
,
make_iota
(
0
,
num_messages
));
}
CAF_TEST_FIXTURE_SCOPE_END
()
libcaf_core/test/time_emitter.cpp
0 → 100644
View file @
fb863af3
/******************************************************************************
* ____ _ _____ *
* / ___| / \ | ___| C++ *
* | | / _ \ | |_ Actor *
* | |___ / ___ \| _| Framework *
* \____/_/ \_|_| *
* *
* Copyright (C) 2011 - 2017 *
* Dominik Charousset <dominik.charousset (at) haw-hamburg.de> *
* *
* Distributed under the terms and conditions of the BSD 3-Clause License or *
* (at your option) under the terms and conditions of the Boost Software *
* License 1.0. See accompanying files LICENSE and LICENSE_ALTERNATIVE. *
* *
* If you did not receive a copy of the license files, see *
* http://opensource.org/licenses/BSD-3-Clause and *
* http://www.boost.org/LICENSE_1_0.txt. *
******************************************************************************/
// This test simulates a complex multiplexing over multiple layers of WDRR
// scheduled queues. The goal is to reduce the complex mailbox management of
// CAF to its bare bones in order to test whether the multiplexing of stream
// traffic and asynchronous messages works as intended.
//
// The setup is a fixed WDRR queue with three nestes queues. The first nested
// queue stores asynchronous messages, the second one upstream messages, and
// the last queue is a dynamic WDRR queue storing downstream messages.
//
// We mock just enough of an actor to use the streaming classes and put them to
// work in a pipeline with 2 or 3 stages.
#define CAF_SUITE time_emitter
#include <vector>
#include "caf/detail/gcd.hpp"
#include "caf/detail/tick_emitter.hpp"
#include "caf/test/unit_test.hpp"
using
std
::
vector
;
using
namespace
caf
;
CAF_TEST
(
ticks
)
{
using
timespan
=
std
::
chrono
::
microseconds
;
timespan
credit_interval
{
200
};
timespan
force_batch_interval
{
50
};
auto
cycle
=
detail
::
gcd
(
credit_interval
.
count
(),
force_batch_interval
.
count
());
CAF_CHECK_EQUAL
(
cycle
,
50
);
auto
force_batch_frequency
=
force_batch_interval
.
count
()
/
cycle
;
auto
credit_frequency
=
credit_interval
.
count
()
/
cycle
;
using
time_point
=
std
::
chrono
::
steady_clock
::
time_point
;
detail
::
tick_emitter
tctrl
{
time_point
{
timespan
{
100
}}};
tctrl
.
interval
(
timespan
{
cycle
});
vector
<
long
>
ticks
;
int
force_batch_triggers
=
0
;
int
credit_triggers
=
0
;
auto
f
=
[
&
](
long
tick_id
)
{
ticks
.
push_back
(
tick_id
);
if
(
tick_id
%
force_batch_frequency
==
0
)
++
force_batch_triggers
;
if
(
tick_id
%
credit_frequency
==
0
)
++
credit_triggers
;
};
CAF_MESSAGE
(
"trigger 4 ticks"
);
tctrl
.
update
(
time_point
{
timespan
{
300
}},
f
);
CAF_CHECK_EQUAL
(
deep_to_string
(
ticks
),
"[1, 2, 3, 4]"
);
CAF_CHECK_EQUAL
(
force_batch_triggers
,
4
);
CAF_CHECK_EQUAL
(
credit_triggers
,
1
);
CAF_MESSAGE
(
"trigger 3 more ticks"
);
tctrl
.
update
(
time_point
{
timespan
{
475
}},
f
);
CAF_CHECK_EQUAL
(
deep_to_string
(
ticks
),
"[1, 2, 3, 4, 5, 6, 7]"
);
CAF_CHECK_EQUAL
(
force_batch_triggers
,
7
);
CAF_CHECK_EQUAL
(
credit_triggers
,
1
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment