Commit c4b3efe6 authored by Joseph Noir's avatar Joseph Noir Committed by GitHub

Merge pull request #41 from actor-framework/topic/add-transport-base

Add transport_base class
parents ecda6528 5cf246d8
......@@ -19,29 +19,30 @@
#pragma once
#include <deque>
#include <unordered_map>
#include <vector>
#include "caf/byte.hpp"
#include "caf/error.hpp"
#include "caf/fwd.hpp"
#include "caf/ip_endpoint.hpp"
#include "caf/logger.hpp"
#include "caf/net/defaults.hpp"
#include "caf/net/endpoint_manager.hpp"
#include "caf/net/fwd.hpp"
#include "caf/net/receive_policy.hpp"
#include "caf/net/transport_base.hpp"
#include "caf/net/transport_worker_dispatcher.hpp"
#include "caf/net/udp_datagram_socket.hpp"
#include "caf/sec.hpp"
#include "caf/span.hpp"
#include "caf/variant.hpp"
namespace caf {
namespace net {
namespace caf::net {
template <class Factory>
using datagram_transport_base = transport_base<
datagram_transport<Factory>,
transport_worker_dispatcher<Factory, ip_endpoint>, udp_datagram_socket,
Factory, ip_endpoint>;
/// Implements a udp_transport policy that manages a datagram socket.
template <class Factory>
class datagram_transport {
class datagram_transport : public datagram_transport_base<Factory> {
public:
// Maximal UDP-packet size
static constexpr size_t max_datagram_size = std::numeric_limits<
......@@ -49,163 +50,87 @@ public:
// -- member types -----------------------------------------------------------
using id_type = ip_endpoint;
using buffer_type = std::vector<byte>;
using factory_type = Factory;
using buffer_cache_type = std::vector<buffer_type>;
using id_type = ip_endpoint;
using factory_type = Factory;
using application_type = typename factory_type::application_type;
using transport_type = datagram_transport<Factory>;
using super = datagram_transport_base<factory_type>;
using dispatcher_type = transport_worker_dispatcher<transport_type, id_type>;
using buffer_type = typename super::buffer_type;
using application_type = typename Factory::application_type;
using buffer_cache_type = typename super::buffer_cache_type;
// -- constructors, destructors, and assignment operators --------------------
datagram_transport(udp_datagram_socket handle, factory_type factory)
: dispatcher_(*this, std::move(factory)),
handle_(handle),
read_buf_(max_datagram_size),
manager_(nullptr) {
: super(handle, std::move(factory)) {
// nop
}
// -- properties -------------------------------------------------------------
udp_datagram_socket handle() const noexcept {
return handle_;
}
actor_system& system() {
return manager().system();
}
transport_type& transport() {
return *this;
}
endpoint_manager& manager() {
return *manager_;
}
// -- public member functions ------------------------------------------------
template <class Parent>
error init(Parent& parent) {
manager_ = &parent;
auto& cfg = system().config();
auto max_header_bufs = get_or(cfg, "middleman.max-header-buffers",
defaults::middleman::max_header_buffers);
header_bufs_.reserve(max_header_bufs);
auto max_payload_bufs = get_or(cfg, "middleman.max-payload-buffers",
defaults::middleman::max_payload_buffers);
payload_bufs_.reserve(max_payload_bufs);
if (auto err = dispatcher_.init(*this))
error init(endpoint_manager& manager) override {
CAF_LOG_TRACE("");
if (auto err = super::init(manager))
return err;
prepare_next_read();
return none;
}
template <class Parent>
bool handle_read_event(Parent&) {
CAF_LOG_TRACE(CAF_ARG(handle_.id));
auto ret = read(handle_, make_span(read_buf_));
bool handle_read_event(endpoint_manager&) override {
CAF_LOG_TRACE(CAF_ARG(this->handle_.id));
auto ret = read(this->handle_, make_span(this->read_buf_));
if (auto res = get_if<std::pair<size_t, ip_endpoint>>(&ret)) {
auto num_bytes = res->first;
CAF_LOG_DEBUG("received " << num_bytes << " bytes");
auto ep = res->second;
read_buf_.resize(num_bytes);
dispatcher_.handle_data(*this, make_span(read_buf_), std::move(ep));
this->read_buf_.resize(num_bytes);
this->next_layer_.handle_data(*this, make_span(this->read_buf_),
std::move(ep));
prepare_next_read();
} else {
auto err = get<sec>(ret);
CAF_LOG_DEBUG("send failed" << CAF_ARG(err));
dispatcher_.handle_error(err);
this->next_layer_.handle_error(err);
return false;
}
return true;
}
template <class Parent>
bool handle_write_event(Parent& parent) {
CAF_LOG_TRACE(CAF_ARG(handle_.id)
bool handle_write_event(endpoint_manager& manager) override {
CAF_LOG_TRACE(CAF_ARG(this->handle_.id)
<< CAF_ARG2("queue-size", packet_queue_.size()));
// Try to write leftover data.
write_some();
// Get new data from parent.
for (auto msg = parent.next_message(); msg != nullptr;
msg = parent.next_message()) {
dispatcher_.write_message(*this, std::move(msg));
for (auto msg = manager.next_message(); msg != nullptr;
msg = manager.next_message()) {
this->next_layer_.write_message(*this, std::move(msg));
}
// Write prepared data.
return write_some();
}
template <class Parent>
void resolve(Parent&, const uri& locator, const actor& listener) {
dispatcher_.resolve(*this, locator, listener);
}
template <class Parent>
void new_proxy(Parent&, const node_id& peer, actor_id id) {
dispatcher_.new_proxy(*this, peer, id);
}
template <class Parent>
void local_actor_down(Parent&, const node_id& peer, actor_id id,
error reason) {
dispatcher_.local_actor_down(*this, peer, id, std::move(reason));
}
template <class Parent>
void timeout(Parent&, atom_value value, uint64_t id) {
dispatcher_.timeout(*this, value, id);
}
void set_timeout(uint64_t timeout_id, id_type id) {
dispatcher_.set_timeout(timeout_id, id);
}
void handle_error(sec code) {
dispatcher_.handle_error(code);
}
// TODO: remove this function. `resolve` should add workers when needed.
error add_new_worker(node_id node, id_type id) {
auto worker = dispatcher_.add_new_worker(*this, node, id);
auto worker = this->next_layer_.add_new_worker(*this, node, id);
if (!worker)
return worker.error();
return none;
}
void prepare_next_read() {
read_buf_.clear();
read_buf_.resize(max_datagram_size);
}
void configure_read(receive_policy::config) {
// nop
}
void write_packet(id_type id, span<buffer_type*> buffers) {
void write_packet(id_type id, span<buffer_type*> buffers) override {
CAF_LOG_TRACE("");
CAF_ASSERT(!buffers.empty());
if (packet_queue_.empty())
manager().register_writing();
this->manager().register_writing();
// By convention, the first buffer is a header buffer. Every other buffer is
// a payload buffer.
packet_queue_.emplace_back(id, buffers);
}
// -- buffer management ------------------------------------------------------
buffer_type next_header_buffer() {
return next_buffer_impl(header_bufs_);
}
buffer_type next_payload_buffer() {
return next_buffer_impl(payload_bufs_);
}
/// Helper struct for managing outgoing packets
struct packet {
id_type id;
......@@ -219,75 +144,66 @@ public:
bytes.emplace_back(std::move(*buf));
}
}
std::vector<std::vector<byte>*> get_buffer_ptrs() {
std::vector<std::vector<byte>*> ptrs;
for (auto& buf : bytes)
ptrs.emplace_back(&buf);
return ptrs;
}
};
private:
// -- utility functions ------------------------------------------------------
static buffer_type next_buffer_impl(buffer_cache_type cache) {
if (cache.empty()) {
return {};
}
auto buf = std::move(cache.back());
cache.pop_back();
return buf;
void prepare_next_read() {
this->read_buf_.resize(max_datagram_size);
}
bool write_some() {
CAF_LOG_TRACE(CAF_ARG(handle_.id));
CAF_LOG_TRACE(CAF_ARG2("handle", this->handle_.id));
// Helper function to sort empty buffers back into the right caches.
auto recycle = [&]() {
auto& front = packet_queue_.front();
auto& bufs = front.bytes;
auto it = bufs.begin();
if (header_bufs_.size() < header_bufs_.capacity()) {
if (this->header_bufs_.size() < this->header_bufs_.capacity()) {
it->clear();
header_bufs_.emplace_back(std::move(*it++));
this->header_bufs_.emplace_back(std::move(*it++));
}
for (;
it != bufs.end() && payload_bufs_.size() < payload_bufs_.capacity();
for (; it != bufs.end()
&& this->payload_bufs_.size() < this->payload_bufs_.capacity();
++it) {
it->clear();
payload_bufs_.emplace_back(std::move(*it));
this->payload_bufs_.emplace_back(std::move(*it));
}
packet_queue_.pop_front();
};
// Write as many bytes as possible.
while (!packet_queue_.empty()) {
auto& packet = packet_queue_.front();
std::vector<std::vector<byte>*> ptrs;
for (auto& buf : packet.bytes)
ptrs.emplace_back(&buf);
auto write_ret = write(handle_, make_span(ptrs), packet.id);
auto ptrs = packet.get_buffer_ptrs();
auto write_ret = write(this->handle_, make_span(ptrs), packet.id);
if (auto num_bytes = get_if<size_t>(&write_ret)) {
CAF_LOG_DEBUG(CAF_ARG(handle_.id) << CAF_ARG(*num_bytes));
CAF_LOG_DEBUG(CAF_ARG(this->handle_.id) << CAF_ARG(*num_bytes));
CAF_LOG_WARNING_IF(*num_bytes < packet.size,
"packet was not sent completely");
recycle();
} else {
auto err = get<sec>(write_ret);
if (err != sec::unavailable_or_would_block) {
CAF_LOG_DEBUG("send failed" << CAF_ARG(err));
dispatcher_.handle_error(err);
CAF_LOG_ERROR("write failed" << CAF_ARG(err));
this->next_layer_.handle_error(err);
return false;
}
CAF_LOG_DEBUG("write returned `unavailable_or_would_block`");
return true;
}
}
return false;
}
dispatcher_type dispatcher_;
udp_datagram_socket handle_;
buffer_cache_type header_bufs_;
buffer_cache_type payload_bufs_;
std::vector<byte> read_buf_;
std::deque<packet> packet_queue_;
endpoint_manager* manager_;
};
} // namespace net
} // namespace caf
} // namespace caf::net
......@@ -22,11 +22,16 @@
#include "caf/intrusive_ptr.hpp"
namespace caf {
namespace net {
namespace caf::net {
// -- templates ----------------------------------------------------------------
template <class Application>
class stream_transport;
template <class Factory>
class datagram_transport;
template <class Application, class IdType = unit_t>
class transport_worker;
......@@ -49,6 +54,8 @@ struct socket;
struct stream_socket;
struct tcp_accept_socket;
struct tcp_stream_socket;
struct datagram_socket;
struct udp_datagram_socket;
// -- smart pointers -----------------------------------------------------------
......@@ -58,5 +65,4 @@ using multiplexer_ptr = std::shared_ptr<multiplexer>;
using socket_manager_ptr = intrusive_ptr<socket_manager>;
using weak_multiplexer_ptr = std::weak_ptr<multiplexer>;
} // namespace net
} // namespace caf
} // namespace caf::net
......@@ -5,7 +5,7 @@
* | |___ / ___ \| _| Framework *
* \____/_/ \_|_| *
* *
* Copyright 2011-2018 Dominik Charousset *
* Copyright 2011-2019 Dominik Charousset *
* *
* Distributed under the terms and conditions of the BSD 3-Clause License or *
* (at your option) under the terms and conditions of the Boost Software *
......@@ -18,248 +18,163 @@
#pragma once
#include "caf/actor_system_config.hpp"
#include "caf/byte.hpp"
#include "caf/error.hpp"
#include "caf/expected.hpp"
#include <deque>
#include <vector>
#include "caf/fwd.hpp"
#include "caf/logger.hpp"
#include "caf/net/defaults.hpp"
#include "caf/net/endpoint_manager.hpp"
#include "caf/net/fwd.hpp"
#include "caf/net/receive_policy.hpp"
#include "caf/net/stream_socket.hpp"
#include "caf/net/transport_base.hpp"
#include "caf/net/transport_worker.hpp"
#include "caf/sec.hpp"
#include "caf/span.hpp"
#include "caf/variant.hpp"
namespace caf {
namespace net {
namespace caf::net {
template <class Application>
using stream_transport_base = transport_base<
stream_transport<Application>, transport_worker<Application>, stream_socket,
Application, unit_t>;
/// Implements a stream_transport that manages a stream socket.
template <class Application>
class stream_transport {
class stream_transport : public stream_transport_base<Application> {
public:
// -- member types -----------------------------------------------------------
using application_type = Application;
using transport_type = stream_transport;
using worker_type = transport_worker<application_type>;
using buffer_type = std::vector<byte>;
using id_type = unit_t;
using super = stream_transport_base<application_type>;
using buffer_cache_type = std::vector<buffer_type>;
using buffer_type = typename super::buffer_type;
using write_queue_type = std::deque<std::pair<bool, buffer_type>>;
// -- constructors, destructors, and assignment operators --------------------
stream_transport(stream_socket handle, application_type application)
: worker_(std::move(application)),
handle_(handle),
// max_consecutive_reads_(0),
: super(handle, std::move(application)),
written_(0),
read_threshold_(1024),
collected_(0),
max_(1024),
rd_flag_(net::receive_policy_flag::exactly),
written_(0),
manager_(nullptr) {
rd_flag_(net::receive_policy_flag::exactly) {
// nop
}
// -- properties -------------------------------------------------------------
stream_socket handle() const noexcept {
return handle_;
}
actor_system& system() {
return manager().system();
}
application_type& application() {
return worker_.application();
}
transport_type& transport() {
return *this;
}
endpoint_manager& manager() {
return *manager_;
}
// -- member functions -------------------------------------------------------
template <class Parent>
error init(Parent& parent) {
manager_ = &parent;
auto& cfg = system().config();
auto max_header_bufs = get_or(cfg, "middleman.max-header-buffers",
defaults::middleman::max_header_buffers);
header_bufs_.reserve(max_header_bufs);
auto max_payload_bufs = get_or(cfg, "middleman.max-payload-buffers",
defaults::middleman::max_payload_buffers);
payload_bufs_.reserve(max_payload_bufs);
if (auto err = worker_.init(*this))
return err;
return none;
}
template <class Parent>
bool handle_read_event(Parent&) {
auto buf = read_buf_.data() + collected_;
size_t len = read_threshold_ - collected_;
CAF_LOG_TRACE(CAF_ARG(handle_.id) << CAF_ARG(len));
auto ret = read(handle_, make_span(buf, len));
bool handle_read_event(endpoint_manager&) override {
auto buf = this->read_buf_.data() + this->collected_;
size_t len = this->read_threshold_ - this->collected_;
CAF_LOG_TRACE(CAF_ARG2("handle", this->handle().id)
<< CAF_ARG2("missing", len));
auto ret = read(this->handle_, make_span(buf, len));
// Update state.
if (auto num_bytes = get_if<size_t>(&ret)) {
CAF_LOG_DEBUG(CAF_ARG(len) << CAF_ARG(handle_.id) << CAF_ARG(*num_bytes));
collected_ += *num_bytes;
if (collected_ >= read_threshold_) {
if (auto err = worker_.handle_data(*this, read_buf_)) {
CAF_LOG_WARNING("handle_data failed:" << CAF_ARG(err));
CAF_LOG_DEBUG(CAF_ARG(len)
<< CAF_ARG(this->handle_.id) << CAF_ARG(*num_bytes));
this->collected_ += *num_bytes;
if (this->collected_ >= this->read_threshold_) {
if (auto err = this->next_layer_.handle_data(*this, this->read_buf_)) {
CAF_LOG_ERROR("handle_data failed: " << CAF_ARG(err));
return false;
}
prepare_next_read();
this->prepare_next_read();
}
} else {
auto err = get<sec>(ret);
if (err != sec::unavailable_or_would_block) {
CAF_LOG_DEBUG("receive failed" << CAF_ARG(err));
worker_.handle_error(err);
CAF_LOG_DEBUG("read failed" << CAF_ARG(err));
this->next_layer_.handle_error(err);
return false;
}
}
return true;
}
template <class Parent>
bool handle_write_event(Parent& parent) {
bool handle_write_event(endpoint_manager& parent) override {
CAF_LOG_TRACE(CAF_ARG2("handle", this->handle().id));
// Try to write leftover data.
write_some();
// Get new data from parent.
// TODO: dont read all messages at once - get one by one.
for (auto msg = parent.next_message(); msg != nullptr;
msg = parent.next_message()) {
worker_.write_message(*this, std::move(msg));
this->next_layer_.write_message(*this, std::move(msg));
}
// Write prepared data.
return write_some();
}
template <class Parent>
void resolve(Parent&, const uri& locator, const actor& listener) {
worker_.resolve(*this, locator.path(), listener);
}
template <class Parent>
void new_proxy(Parent&, const node_id& peer, actor_id id) {
worker_.new_proxy(*this, peer, id);
}
template <class Parent>
void local_actor_down(Parent&, const node_id& peer, actor_id id,
error reason) {
worker_.local_actor_down(*this, peer, id, std::move(reason));
}
template <class Parent>
void timeout(Parent&, atom_value value, uint64_t id) {
worker_.timeout(*this, value, id);
void write_packet(id_type, span<buffer_type*> buffers) override {
CAF_LOG_TRACE("");
CAF_ASSERT(!buffers.empty());
if (this->write_queue_.empty())
this->manager().register_writing();
// By convention, the first buffer is a header buffer. Every other buffer is
// a payload buffer.
auto i = buffers.begin();
this->write_queue_.emplace_back(true, std::move(*(*i++)));
while (i != buffers.end())
this->write_queue_.emplace_back(false, std::move(*(*i++)));
}
template <class... Ts>
void set_timeout(uint64_t, Ts&&...) {
// nop
void configure_read(receive_policy::config cfg) override {
rd_flag_ = cfg.first;
max_ = cfg.second;
prepare_next_read();
}
void handle_error(sec code) {
worker_.handle_error(code);
}
private:
// -- utility functions ------------------------------------------------------
void prepare_next_read() {
read_buf_.clear();
collected_ = 0;
// This cast does nothing, but prevents a weird compiler error on GCC
// <= 4.9.
// TODO: remove cast when dropping support for GCC 4.9.
switch (static_cast<net::receive_policy_flag>(rd_flag_)) {
switch (rd_flag_) {
case net::receive_policy_flag::exactly:
if (read_buf_.size() != max_)
read_buf_.resize(max_);
if (this->read_buf_.size() != max_)
this->read_buf_.resize(max_);
read_threshold_ = max_;
break;
case net::receive_policy_flag::at_most:
if (read_buf_.size() != max_)
read_buf_.resize(max_);
if (this->read_buf_.size() != max_)
this->read_buf_.resize(max_);
read_threshold_ = 1;
break;
case net::receive_policy_flag::at_least: {
// read up to 10% more, but at least allow 100 bytes more
auto max_size = max_ + std::max<size_t>(100, max_ / 10);
if (read_buf_.size() != max_size)
read_buf_.resize(max_size);
if (this->read_buf_.size() != max_size)
this->read_buf_.resize(max_size);
read_threshold_ = max_;
break;
}
}
}
void configure_read(receive_policy::config cfg) {
rd_flag_ = cfg.first;
max_ = cfg.second;
prepare_next_read();
}
void write_packet(unit_t, span<buffer_type*> buffers) {
CAF_ASSERT(!buffers.empty());
if (write_queue_.empty())
manager().register_writing();
// By convention, the first buffer is a header buffer. Every other buffer is
// a payload buffer.
auto i = buffers.begin();
write_queue_.emplace_back(true, std::move(*(*i++)));
while (i != buffers.end())
write_queue_.emplace_back(false, std::move(*(*i++)));
}
// -- buffer management ------------------------------------------------------
buffer_type next_header_buffer() {
return next_buffer_impl(header_bufs_);
}
buffer_type next_payload_buffer() {
return next_buffer_impl(payload_bufs_);
}
private:
// -- utility functions ------------------------------------------------------
static buffer_type next_buffer_impl(buffer_cache_type cache) {
if (cache.empty()) {
return {};
}
auto buf = std::move(cache.back());
cache.pop_back();
return buf;
}
bool write_some() {
CAF_LOG_TRACE(CAF_ARG(handle_.id));
CAF_LOG_TRACE(CAF_ARG2("handle", this->handle_.id));
// Helper function to sort empty buffers back into the right caches.
auto recycle = [&]() {
auto& front = write_queue_.front();
auto& front = this->write_queue_.front();
auto& is_header = front.first;
auto& buf = front.second;
written_ = 0;
buf.clear();
if (is_header) {
if (header_bufs_.size() < header_bufs_.capacity())
header_bufs_.emplace_back(std::move(buf));
} else if (payload_bufs_.size() < payload_bufs_.capacity()) {
payload_bufs_.emplace_back(std::move(buf));
if (this->header_bufs_.size() < this->header_bufs_.capacity())
this->header_bufs_.emplace_back(std::move(buf));
} else if (this->payload_bufs_.size() < this->payload_bufs_.capacity()) {
this->payload_bufs_.emplace_back(std::move(buf));
}
write_queue_.pop_front();
};
......@@ -269,9 +184,9 @@ private:
CAF_ASSERT(!buf.empty());
auto data = buf.data() + written_;
auto len = buf.size() - written_;
auto write_ret = write(handle_, make_span(data, len));
auto write_ret = write(this->handle(), make_span(data, len));
if (auto num_bytes = get_if<size_t>(&write_ret)) {
CAF_LOG_DEBUG(CAF_ARG(handle_.id) << CAF_ARG(*num_bytes));
CAF_LOG_DEBUG(CAF_ARG(this->handle_.id) << CAF_ARG(*num_bytes));
if (*num_bytes + written_ >= buf.size()) {
recycle();
written_ = 0;
......@@ -283,7 +198,7 @@ private:
auto err = get<sec>(write_ret);
if (err != sec::unavailable_or_would_block) {
CAF_LOG_DEBUG("send failed" << CAF_ARG(err));
worker_.handle_error(err);
this->next_layer_.handle_error(err);
return false;
}
return true;
......@@ -292,26 +207,12 @@ private:
return false;
}
worker_type worker_;
stream_socket handle_;
buffer_cache_type header_bufs_;
buffer_cache_type payload_bufs_;
buffer_type read_buf_;
std::deque<std::pair<bool, buffer_type>> write_queue_;
// TODO implement retries using this member!
// size_t max_consecutive_reads_;
write_queue_type write_queue_;
size_t written_;
size_t read_threshold_;
size_t collected_;
size_t max_;
receive_policy_flag rd_flag_;
size_t written_;
endpoint_manager* manager_;
};
} // namespace net
} // namespace caf
} // namespace caf::net
/******************************************************************************
* ____ _ _____ *
* / ___| / \ | ___| C++ *
* | | / _ \ | |_ Actor *
* | |___ / ___ \| _| Framework *
* \____/_/ \_|_| *
* *
* Copyright 2011-2019 Dominik Charousset *
* *
* Distributed under the terms and conditions of the BSD 3-Clause License or *
* (at your option) under the terms and conditions of the Boost Software *
* License 1.0. See accompanying files LICENSE and LICENSE_ALTERNATIVE. *
* *
* If you did not receive a copy of the license files, see *
* http://opensource.org/licenses/BSD-3-Clause and *
* http://www.boost.org/LICENSE_1_0.txt. *
******************************************************************************/
#pragma once
#include "caf/detail/overload.hpp"
#include "caf/fwd.hpp"
#include "caf/logger.hpp"
#include "caf/net/defaults.hpp"
#include "caf/net/receive_policy.hpp"
namespace caf::net {
/// Implements base class for transports.
template <class Transport, class NextLayer, class Handle, class Application,
class IdType>
class transport_base {
public:
// -- member types -----------------------------------------------------------
using next_layer_type = NextLayer;
using handle_type = Handle;
using transport_type = Transport;
using application_type = Application;
using id_type = IdType;
using buffer_type = std::vector<byte>;
using buffer_cache_type = std::vector<buffer_type>;
// -- constructors, destructors, and assignment operators --------------------
transport_base(handle_type handle, application_type application)
: next_layer_(std::move(application)),
handle_(handle),
// max_consecutive_reads_(0),
manager_(nullptr) {
// nop
}
// -- properties -------------------------------------------------------------
handle_type handle() const noexcept {
return handle_;
}
actor_system& system() {
return manager().system();
}
application_type& application() {
return next_layer_.application();
}
transport_type& transport() {
return *reinterpret_cast<transport_type*>(this);
}
endpoint_manager& manager() {
return *manager_;
}
// -- transport member functions ---------------------------------------------
virtual error init(endpoint_manager& parent) {
CAF_LOG_TRACE("");
manager_ = &parent;
auto& cfg = system().config();
auto max_header_bufs = get_or(cfg, "middleman.max-header-buffers",
defaults::middleman::max_header_buffers);
header_bufs_.reserve(max_header_bufs);
auto max_payload_bufs = get_or(cfg, "middleman.max-payload-buffers",
defaults::middleman::max_payload_buffers);
payload_bufs_.reserve(max_payload_bufs);
if (auto err = next_layer_.init(*this))
return err;
return none;
}
auto resolve(endpoint_manager&, const uri& locator, const actor& listener) {
CAF_LOG_TRACE(CAF_ARG(locator) << CAF_ARG(listener));
auto f = detail::make_overload(
[&](auto& layer) -> decltype(layer.resolve(*this, locator, listener)) {
return layer.resolve(*this, locator, listener);
},
[&](auto& layer) -> decltype(
layer.resolve(*this, locator.path(), listener)) {
return layer.resolve(*this, locator.path(), listener);
});
f(next_layer_);
}
void new_proxy(endpoint_manager&, const node_id& peer, actor_id id) {
next_layer_.new_proxy(*this, peer, id);
}
void local_actor_down(endpoint_manager&, const node_id& peer, actor_id id,
error reason) {
next_layer_.local_actor_down(*this, peer, id, std::move(reason));
}
void timeout(endpoint_manager&, atom_value value, uint64_t id) {
next_layer_.timeout(*this, value, id);
}
void set_timeout(uint64_t timeout_id, id_type id) {
next_layer_.set_timeout(timeout_id, id);
}
void handle_error(sec code) {
next_layer_.handle_error(code);
}
// -- (pure) virtual functions -----------------------------------------------
virtual void configure_read(receive_policy::config){
// nop
};
virtual bool handle_read_event(endpoint_manager&) = 0;
virtual bool handle_write_event(endpoint_manager& parent) = 0;
virtual void write_packet(id_type id, span<buffer_type*> buffers) = 0;
// -- buffer management ------------------------------------------------------
buffer_type next_header_buffer() {
return next_buffer_impl(header_bufs_);
}
buffer_type next_payload_buffer() {
return next_buffer_impl(payload_bufs_);
}
private:
// -- utility functions ------------------------------------------------------
static buffer_type next_buffer_impl(buffer_cache_type cache) {
if (cache.empty()) {
return {};
}
auto buf = std::move(cache.back());
cache.pop_back();
return buf;
}
protected:
next_layer_type next_layer_;
handle_type handle_;
buffer_cache_type header_bufs_;
buffer_cache_type payload_bufs_;
buffer_type read_buf_;
// TODO implement retries using this member! Should this go into stream_trans?
// size_t max_consecutive_reads_;
endpoint_manager* manager_;
};
} // namespace caf::net
......@@ -18,16 +18,12 @@
#pragma once
#include "caf/byte.hpp"
#include "caf/ip_endpoint.hpp"
#include "caf/net/endpoint_manager.hpp"
#include "caf/net/endpoint_manager_queue.hpp"
#include "caf/net/fwd.hpp"
#include "caf/net/packet_writer_decorator.hpp"
#include "caf/span.hpp"
#include "caf/unit.hpp"
namespace caf {
namespace net {
namespace caf::net {
/// Implements a worker for transport protocols.
template <class Application, class IdType>
......@@ -41,7 +37,8 @@ public:
// -- constructors, destructors, and assignment operators --------------------
transport_worker(application_type application, id_type id = id_type{})
explicit transport_worker(application_type application,
id_type id = id_type{})
: application_(std::move(application)), id_(std::move(id)) {
// nop
}
......@@ -119,5 +116,4 @@ template <class Application, class IdType = unit_t>
using transport_worker_ptr = std::shared_ptr<
transport_worker<Application, IdType>>;
} // namespace net
} // namespace caf
} // namespace caf::net
......@@ -18,34 +18,27 @@
#pragma once
#include <caf/logger.hpp>
#include <caf/sec.hpp>
#include <unordered_map>
#include "caf/byte.hpp"
#include "caf/ip_endpoint.hpp"
#include "caf/net/endpoint_manager.hpp"
#include "caf/logger.hpp"
#include "caf/net/endpoint_manager_queue.hpp"
#include "caf/net/fwd.hpp"
#include "caf/net/packet_writer_decorator.hpp"
#include "caf/net/transport_worker.hpp"
#include "caf/sec.hpp"
#include "caf/send.hpp"
#include "caf/span.hpp"
#include "caf/unit.hpp"
namespace caf {
namespace net {
namespace caf::net {
/// Implements a dispatcher that dispatches between transport and workers.
template <class Transport, class IdType>
template <class Factory, class IdType>
class transport_worker_dispatcher {
public:
// -- member types -----------------------------------------------------------
using id_type = IdType;
using transport_type = Transport;
using factory_type = typename transport_type::factory_type;
using factory_type = Factory;
using application_type = typename factory_type::application_type;
......@@ -55,8 +48,8 @@ public:
// -- constructors, destructors, and assignment operators --------------------
transport_worker_dispatcher(transport_type& transport, factory_type factory)
: factory_(std::move(factory)), transport_(&transport) {
explicit transport_worker_dispatcher(factory_type factory)
: factory_(std::move(factory)) {
// nop
}
......@@ -141,6 +134,7 @@ public:
template <class Parent>
expected<worker_ptr> add_new_worker(Parent& parent, node_id node,
id_type id) {
CAF_LOG_TRACE(CAF_ARG(node) << CAF_ARG(id));
auto application = factory_.make();
auto worker = std::make_shared<worker_type>(std::move(application), id);
if (auto err = worker->init(parent))
......@@ -176,8 +170,6 @@ private:
std::unordered_map<uint64_t, worker_ptr> workers_by_timeout_id_;
factory_type factory_;
transport_type* transport_;
};
} // namespace net
} // namespace caf
} // namespace caf::net
......@@ -25,9 +25,9 @@
#include "caf/byte.hpp"
#include "caf/detail/scope_guard.hpp"
#include "caf/ip_endpoint.hpp"
#include "caf/make_actor.hpp"
#include "caf/net/actor_proxy_impl.hpp"
#include "caf/net/endpoint_manager.hpp"
#include "caf/net/multiplexer.hpp"
#include "caf/serializer_impl.hpp"
#include "caf/span.hpp"
......
......@@ -23,6 +23,7 @@
#include "caf/net/test/host_fixture.hpp"
#include "caf/test/dsl.hpp"
#include "caf/ip_endpoint.hpp"
#include "caf/make_actor.hpp"
#include "caf/monitorable_actor.hpp"
#include "caf/node_id.hpp"
......@@ -182,12 +183,12 @@ uri operator"" _u(const char* cstr, size_t cstr_len) {
}
struct fixture : host_fixture {
using dispatcher_type = transport_worker_dispatcher<dummy_transport,
using dispatcher_type = transport_worker_dispatcher<dummy_application_factory,
ip_endpoint>;
fixture()
: buf{std::make_shared<buffer_type>()},
dispatcher{dummy, dummy_application_factory{buf}},
dispatcher{dummy_application_factory{buf}},
dummy{buf} {
add_new_workers();
}
......@@ -272,7 +273,7 @@ struct fixture : host_fixture {
CAF_TEST_FIXTURE_SCOPE(transport_worker_dispatcher_test, fixture)
CAF_TEST(init) {
dispatcher_type dispatcher{dummy, dummy_application_factory{buf}};
dispatcher_type dispatcher{dummy_application_factory{buf}};
CAF_CHECK_EQUAL(dispatcher.init(dummy), none);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment