Commit 86e60176 authored by Marian Triebe's avatar Marian Triebe

Apply new coding style

parent f2a33b6a
......@@ -52,184 +52,166 @@ class actor_facade;
template <typename Ret, typename... Args>
class actor_facade<Ret(Args...)> : public abstract_actor {
friend class command<actor_facade, Ret>;
friend class command<actor_facade, Ret>;
public:
typedef cow_tuple<typename detail::rm_const_and_ref<Args>::type...>
args_tuple;
typedef std::function<optional<args_tuple>(any_tuple)> arg_mapping;
typedef std::function<any_tuple(Ret&)> result_mapping;
static intrusive_ptr<actor_facade>
create(const program& prog, const char* kernel_name,
arg_mapping map_args, result_mapping map_result,
const dim_vec& global_dims, const dim_vec& offsets,
const dim_vec& local_dims, size_t result_size) {
if (global_dims.empty()) {
auto str = "OpenCL kernel needs at least 1 global dimension.";
CPPA_LOGM_ERROR(detail::demangle(typeid(actor_facade)).c_str(),
str);
throw std::runtime_error(str);
}
auto check_vec = [&](const dim_vec& vec, const char* name) {
if (!vec.empty() && vec.size() != global_dims.size()) {
std::ostringstream oss;
oss << name << " vector is not empty, but "
<< "its size differs from global dimensions vector's size";
CPPA_LOGM_ERROR(detail::demangle<actor_facade>().c_str(),
oss.str());
throw std::runtime_error(oss.str());
}
};
check_vec(offsets, "offsets");
check_vec(local_dims, "local dimensions");
cl_int err{ 0 };
kernel_ptr kernel;
kernel.adopt(clCreateKernel(prog.m_program.get(), kernel_name, &err));
if (err != CL_SUCCESS) {
std::ostringstream oss;
oss << "clCreateKernel: " << get_opencl_error(err);
CPPA_LOGM_ERROR(detail::demangle<actor_facade>().c_str(),
oss.str());
throw std::runtime_error(oss.str());
}
if (result_size == 0) {
result_size = std::accumulate(global_dims.begin(),
global_dims.end(),
1,
std::multiplies<size_t>{});
}
return new actor_facade<Ret (Args...)>{
prog , kernel , global_dims , offsets,
local_dims, std::move(map_args), std::move(map_result), result_size
};
typedef cow_tuple<typename detail::rm_const_and_ref<Args>::type...>
args_tuple;
typedef std::function<optional<args_tuple>(any_tuple)> arg_mapping;
typedef std::function<any_tuple(Ret&)> result_mapping;
static intrusive_ptr<actor_facade>
create(const program& prog, const char* kernel_name, arg_mapping map_args,
result_mapping map_result, const dim_vec& global_dims,
const dim_vec& offsets, const dim_vec& local_dims,
size_t result_size) {
if (global_dims.empty()) {
auto str = "OpenCL kernel needs at least 1 global dimension.";
CPPA_LOGM_ERROR(detail::demangle(typeid(actor_facade)).c_str(), str);
throw std::runtime_error(str);
}
void enqueue(msg_hdr_cref hdr, any_tuple msg, execution_unit*) override {
CPPA_LOG_TRACE("");
typename detail::il_indices<detail::type_list<Args...>>::type indices;
enqueue_impl(hdr.sender, std::move(msg), hdr.id, indices);
auto check_vec = [&](const dim_vec& vec, const char* name) {
if (!vec.empty() && vec.size() != global_dims.size()) {
std::ostringstream oss;
oss << name << " vector is not empty, but "
<< "its size differs from global dimensions vector's size";
CPPA_LOGM_ERROR(detail::demangle<actor_facade>().c_str(), oss.str());
throw std::runtime_error(oss.str());
}
};
check_vec(offsets, "offsets");
check_vec(local_dims, "local dimensions");
cl_int err{0};
kernel_ptr kernel;
kernel.adopt(clCreateKernel(prog.m_program.get(), kernel_name, &err));
if (err != CL_SUCCESS) {
std::ostringstream oss;
oss << "clCreateKernel: " << get_opencl_error(err);
CPPA_LOGM_ERROR(detail::demangle<actor_facade>().c_str(), oss.str());
throw std::runtime_error(oss.str());
}
if (result_size == 0) {
result_size = std::accumulate(global_dims.begin(), global_dims.end(), 1,
std::multiplies<size_t>{});
}
return new actor_facade<Ret(Args...)>{
prog, kernel, global_dims, offsets,
local_dims, std::move(map_args), std::move(map_result), result_size};
}
private:
void enqueue(msg_hdr_cref hdr, any_tuple msg, execution_unit*) override {
CPPA_LOG_TRACE("");
typename detail::il_indices<detail::type_list<Args...>>::type indices;
enqueue_impl(hdr.sender, std::move(msg), hdr.id, indices);
}
using evnt_vec = std::vector<cl_event>;
using args_vec = std::vector<mem_ptr>;
actor_facade(const program& prog, kernel_ptr kernel,
const dim_vec& global_dimensions,
const dim_vec& global_offsets,
const dim_vec& local_dimensions,
arg_mapping map_args, result_mapping map_result,
size_t result_size)
: m_kernel(kernel) , m_program(prog.m_program)
, m_context(prog.m_context) , m_queue(prog.m_queue)
private:
using evnt_vec = std::vector<cl_event>;
using args_vec = std::vector<mem_ptr>;
actor_facade(const program& prog, kernel_ptr kernel,
const dim_vec& global_dimensions, const dim_vec& global_offsets,
const dim_vec& local_dimensions, arg_mapping map_args,
result_mapping map_result, size_t result_size)
: m_kernel(kernel)
, m_program(prog.m_program)
, m_context(prog.m_context)
, m_queue(prog.m_queue)
, m_global_dimensions(global_dimensions)
, m_global_offsets(global_offsets)
, m_local_dimensions(local_dimensions)
, m_map_args(std::move(map_args))
, m_map_result(std::move(map_result))
, m_result_size(result_size)
{
CPPA_LOG_TRACE("id: " << this->id());
, m_result_size(result_size) {
CPPA_LOG_TRACE("id: " << this->id());
}
template <long... Is>
void enqueue_impl(const actor_addr& sender, any_tuple msg, message_id id,
detail::int_list<Is...>) {
auto opt = m_map_args(std::move(msg));
if (opt) {
response_promise handle{this->address(), sender, id.response_id()};
evnt_vec events;
args_vec arguments;
add_arguments_to_kernel<Ret>(events, arguments, m_result_size,
get_ref<Is>(*opt)...);
auto cmd = make_counted<command<actor_facade, Ret>>(
handle, this, std::move(events), std::move(arguments), m_result_size,
*opt);
cmd->enqueue();
} else {
CPPA_LOGMF(CPPA_ERROR, "actor_facade::enqueue() tuple_cast failed.");
}
template <long... Is>
void enqueue_impl(const actor_addr& sender, any_tuple msg, message_id id,
detail::int_list<Is...>) {
auto opt = m_map_args(std::move(msg));
if (opt) {
response_promise handle{this->address(), sender, id.response_id()};
evnt_vec events;
args_vec arguments;
add_arguments_to_kernel<Ret>(events, arguments, m_result_size,
get_ref<Is>(*opt)...);
auto cmd = make_counted<command<actor_facade, Ret>>(
handle, this,
std::move(events), std::move(arguments),
m_result_size, *opt
);
cmd->enqueue();
} else {
CPPA_LOGMF(CPPA_ERROR, "actor_facade::enqueue() tuple_cast failed.");
}
}
kernel_ptr m_kernel;
program_ptr m_program;
context_ptr m_context;
command_queue_ptr m_queue;
dim_vec m_global_dimensions;
dim_vec m_global_offsets;
dim_vec m_local_dimensions;
arg_mapping m_map_args;
result_mapping m_map_result;
size_t m_result_size;
void add_arguments_to_kernel_rec(evnt_vec&, args_vec& arguments) {
cl_int err{0};
// rotate left (output buffer to the end)
rotate(begin(arguments), begin(arguments) + 1, end(arguments));
for (size_t i = 0; i < arguments.size(); ++i) {
err = clSetKernelArg(m_kernel.get(), i, sizeof(cl_mem),
static_cast<void*>(&arguments[i]));
CPPA_LOG_ERROR_IF(err != CL_SUCCESS,
"clSetKernelArg: " << get_opencl_error(err));
}
kernel_ptr m_kernel;
program_ptr m_program;
context_ptr m_context;
command_queue_ptr m_queue;
dim_vec m_global_dimensions;
dim_vec m_global_offsets;
dim_vec m_local_dimensions;
arg_mapping m_map_args;
result_mapping m_map_result;
size_t m_result_size;
void add_arguments_to_kernel_rec(evnt_vec&, args_vec& arguments) {
cl_int err{0};
// rotate left (output buffer to the end)
rotate(begin(arguments), begin(arguments) + 1, end(arguments));
for(size_t i = 0; i < arguments.size(); ++i) {
err = clSetKernelArg(m_kernel.get(), i, sizeof(cl_mem),
static_cast<void*>(&arguments[i]));
CPPA_LOG_ERROR_IF(err != CL_SUCCESS,
"clSetKernelArg: " << get_opencl_error(err));
}
clFlush(m_queue.get());
clFlush(m_queue.get());
}
template <typename T0, typename... Ts>
void add_arguments_to_kernel_rec(evnt_vec& events, args_vec& arguments,
T0& arg0, Ts&... args) {
cl_int err{0};
size_t buffer_size = sizeof(typename T0::value_type) * arg0.size();
auto buffer = clCreateBuffer(m_context.get(), CL_MEM_READ_ONLY, buffer_size,
nullptr, &err);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clCreateBuffer: " << get_opencl_error(err));
return;
}
template<typename T0, typename... Ts>
void add_arguments_to_kernel_rec(evnt_vec& events, args_vec& arguments,
T0& arg0, Ts&... args) {
cl_int err{0};
size_t buffer_size = sizeof(typename T0::value_type) * arg0.size();
auto buffer = clCreateBuffer(m_context.get(),
CL_MEM_READ_ONLY,
buffer_size,
nullptr,
&err);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clCreateBuffer: " << get_opencl_error(err));
return;
}
cl_event event;
err = clEnqueueWriteBuffer(m_queue.get(), buffer, CL_FALSE, 0,
buffer_size, arg0.data(),
0, nullptr, &event);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clEnqueueWriteBuffer: "
<< get_opencl_error(err));
return;
}
events.push_back(std::move(event));
mem_ptr tmp;
tmp.adopt(std::move(buffer));
arguments.push_back(tmp);
add_arguments_to_kernel_rec(events, arguments, args...);
cl_event event;
err = clEnqueueWriteBuffer(m_queue.get(), buffer, CL_FALSE, 0, buffer_size,
arg0.data(), 0, nullptr, &event);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clEnqueueWriteBuffer: " << get_opencl_error(err));
return;
}
template<typename R, typename... Ts>
void add_arguments_to_kernel(evnt_vec& events, args_vec& arguments,
size_t ret_size, Ts&&... args) {
arguments.clear();
cl_int err{ 0 };
auto buf = clCreateBuffer(m_context.get(), CL_MEM_WRITE_ONLY,
sizeof(typename R::value_type) * ret_size,
nullptr, &err);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clCreateBuffer: " << get_opencl_error(err));
return;
}
mem_ptr tmp;
tmp.adopt(std::move(buf));
arguments.push_back(tmp);
add_arguments_to_kernel_rec(events, arguments, std::forward<Ts>(args)...);
events.push_back(std::move(event));
mem_ptr tmp;
tmp.adopt(std::move(buffer));
arguments.push_back(tmp);
add_arguments_to_kernel_rec(events, arguments, args...);
}
template <typename R, typename... Ts>
void add_arguments_to_kernel(evnt_vec& events, args_vec& arguments,
size_t ret_size, Ts&&... args) {
arguments.clear();
cl_int err{0};
auto buf =
clCreateBuffer(m_context.get(), CL_MEM_WRITE_ONLY,
sizeof(typename R::value_type) * ret_size, nullptr, &err);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clCreateBuffer: " << get_opencl_error(err));
return;
}
mem_ptr tmp;
tmp.adopt(std::move(buf));
arguments.push_back(tmp);
add_arguments_to_kernel_rec(events, arguments, std::forward<Ts>(args)...);
}
};
} // namespace opencl
......
......@@ -35,115 +35,99 @@
namespace caf {
namespace opencl {
template<typename T, typename R>
template <typename T, typename R>
class command : public ref_counted {
public:
command(response_promise handle, intrusive_ptr<T> actor_facade,
std::vector<cl_event> events, std::vector<mem_ptr> arguments,
size_t result_size, any_tuple msg)
: m_result_size(result_size)
, m_handle(handle)
, m_actor_facade(actor_facade)
, m_queue(actor_facade->m_queue)
, m_events(std::move(events))
, m_arguments(std::move(arguments))
, m_result(m_result_size)
, m_msg(msg) {}
command(response_promise handle,
intrusive_ptr<T> actor_facade,
std::vector<cl_event> events,
std::vector<mem_ptr> arguments,
size_t result_size,
any_tuple msg)
: m_result_size(result_size)
, m_handle(handle)
, m_actor_facade(actor_facade)
, m_queue(actor_facade->m_queue)
, m_events(std::move(events))
, m_arguments(std::move(arguments))
, m_result(m_result_size)
, m_msg(msg) { }
~command() {
cl_int err{0};
for(auto& e : m_events) {
err = clReleaseEvent(e);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clReleaseEvent: "
<< get_opencl_error(err));
}
}
~command() {
cl_int err{0};
for (auto& e : m_events) {
err = clReleaseEvent(e);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clReleaseEvent: " << get_opencl_error(err));
}
}
}
void enqueue () {
CPPA_LOG_TRACE("command::enqueue()");
this->ref(); // reference held by the OpenCL comand queue
cl_int err{0};
cl_event event_k;
auto data_or_nullptr = [](const dim_vec& vec) {
return vec.empty() ? nullptr : vec.data();
};
err = clEnqueueNDRangeKernel(m_queue.get(),
m_actor_facade->m_kernel.get(),
m_actor_facade->m_global_dimensions.size(),
data_or_nullptr(m_actor_facade->m_global_offsets),
data_or_nullptr(m_actor_facade->m_global_dimensions),
data_or_nullptr(m_actor_facade->m_local_dimensions),
m_events.size(),
(m_events.empty() ? nullptr : m_events.data()),
&event_k);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clEnqueueNDRangeKernel: "
<< get_opencl_error(err));
this->deref(); // or can anything actually happen?
return;
}
else {
cl_event event_r;
err = clEnqueueReadBuffer(m_queue.get(),
m_arguments.back().get(),
CL_FALSE,
0,
sizeof(typename R::value_type) * m_result_size,
m_result.data(),
1,
&event_k,
&event_r);
if (err != CL_SUCCESS) {
throw std::runtime_error("clEnqueueReadBuffer: "
+ get_opencl_error(err));
this->deref(); // failed to enqueue command
return;
}
err = clSetEventCallback(event_r,
CL_COMPLETE,
[](cl_event, cl_int, void* data) {
auto cmd = reinterpret_cast<command*>(data);
cmd->handle_results();
cmd->deref();
},
this);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clSetEventCallback: "
<< get_opencl_error(err));
this->deref(); // callback is not set
return;
}
void enqueue() {
CPPA_LOG_TRACE("command::enqueue()");
this->ref(); // reference held by the OpenCL comand queue
cl_int err{0};
cl_event event_k;
auto data_or_nullptr = [](const dim_vec& vec) {
return vec.empty() ? nullptr : vec.data();
};
err = clEnqueueNDRangeKernel(
m_queue.get(), m_actor_facade->m_kernel.get(),
m_actor_facade->m_global_dimensions.size(),
data_or_nullptr(m_actor_facade->m_global_offsets),
data_or_nullptr(m_actor_facade->m_global_dimensions),
data_or_nullptr(m_actor_facade->m_local_dimensions), m_events.size(),
(m_events.empty() ? nullptr : m_events.data()), &event_k);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR,
"clEnqueueNDRangeKernel: " << get_opencl_error(err));
this->deref(); // or can anything actually happen?
return;
} else {
cl_event event_r;
err =
clEnqueueReadBuffer(m_queue.get(), m_arguments.back().get(), CL_FALSE,
0, sizeof(typename R::value_type) * m_result_size,
m_result.data(), 1, &event_k, &event_r);
if (err != CL_SUCCESS) {
throw std::runtime_error("clEnqueueReadBuffer: " +
get_opencl_error(err));
this->deref(); // failed to enqueue command
return;
}
err = clSetEventCallback(event_r, CL_COMPLETE,
[](cl_event, cl_int, void* data) {
auto cmd = reinterpret_cast<command*>(data);
cmd->handle_results();
cmd->deref();
},
this);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clSetEventCallback: " << get_opencl_error(err));
this->deref(); // callback is not set
return;
}
err = clFlush(m_queue.get());
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clFlush: " << get_opencl_error(err));
}
m_events.push_back(std::move(event_k));
m_events.push_back(std::move(event_r));
}
err = clFlush(m_queue.get());
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clFlush: " << get_opencl_error(err));
}
m_events.push_back(std::move(event_k));
m_events.push_back(std::move(event_r));
}
}
private:
int m_result_size;
response_promise m_handle;
intrusive_ptr<T> m_actor_facade;
command_queue_ptr m_queue;
std::vector<cl_event> m_events;
std::vector<mem_ptr> m_arguments;
R m_result;
any_tuple m_msg; // required to keep the argument buffers alive (async copy)
int m_result_size;
response_promise m_handle;
intrusive_ptr<T> m_actor_facade;
command_queue_ptr m_queue;
std::vector<cl_event> m_events;
std::vector<mem_ptr> m_arguments;
R m_result;
any_tuple m_msg; // required to keep the argument buffers alive (for async copy)
void handle_results () {
m_handle.deliver(m_actor_facade->m_map_result(m_result));
}
void handle_results() {
m_handle.deliver(m_actor_facade->m_map_result(m_result));
}
};
} // namespace opencl
......
......@@ -29,32 +29,28 @@ namespace opencl {
class device_info {
friend class program;
friend class program;
public:
device_info(device_ptr device,
command_queue_ptr queue,
size_t work_group_size,
cl_uint dimensons,
const dim_vec& items_per_dimension)
: m_max_work_group_size(work_group_size)
, m_max_dimensions(dimensons)
, m_max_work_items_per_dim(items_per_dimension)
, m_device(device)
, m_cmd_queue(queue) { }
inline size_t get_max_work_group_size();
inline cl_uint get_max_dimensions();
inline dim_vec get_max_work_items_per_dim();
device_info(device_ptr device, command_queue_ptr queue,
size_t work_group_size, cl_uint dimensons,
const dim_vec& items_per_dimension)
: m_max_work_group_size(work_group_size)
, m_max_dimensions(dimensons)
, m_max_work_items_per_dim(items_per_dimension)
, m_device(device)
, m_cmd_queue(queue) {}
inline size_t get_max_work_group_size();
inline cl_uint get_max_dimensions();
inline dim_vec get_max_work_items_per_dim();
private:
size_t m_max_work_group_size;
cl_uint m_max_dimensions;
dim_vec m_max_work_items_per_dim;
device_ptr m_device;
command_queue_ptr m_cmd_queue;
size_t m_max_work_group_size;
cl_uint m_max_dimensions;
dim_vec m_max_work_items_per_dim;
device_ptr m_device;
command_queue_ptr m_cmd_queue;
};
/******************************************************************************\
......@@ -62,19 +58,16 @@ class device_info {
\******************************************************************************/
inline size_t device_info::get_max_work_group_size() {
return m_max_work_group_size;
return m_max_work_group_size;
}
inline cl_uint device_info::get_max_dimensions() {
return m_max_dimensions;
}
inline cl_uint device_info::get_max_dimensions() { return m_max_dimensions; }
inline dim_vec device_info::get_max_work_items_per_dim() {
return m_max_work_items_per_dim;
return m_max_work_items_per_dim;
}
} // namespace opencl
} // namespace caf
#endif // CAF_OPENCL_DEVICE_INFO_HPP
......@@ -25,9 +25,9 @@
#include "caf/detail/limited_vector.hpp"
#if defined __APPLE__ || defined(MACOSX)
#include <OpenCL/opencl.h>
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#include <CL/opencl.h>
#endif
namespace caf {
......@@ -40,8 +40,8 @@ typedef detail::limited_vector<size_t, 3> dim_vec;
std::string get_opencl_error(cl_int err);
cl_int clReleaseDeviceDummy (cl_device_id);
cl_int clRetainDeviceDummy (cl_device_id);
cl_int clReleaseDeviceDummy(cl_device_id);
cl_int clRetainDeviceDummy(cl_device_id);
} // namespace opencl
} // namespace caf
......
......@@ -41,27 +41,24 @@ namespace opencl {
class opencl_metainfo {
friend class program;
friend class detail::singleton_manager;
friend command_queue_ptr get_command_queue(uint32_t id);
friend class program;
friend class detail::singleton_manager;
friend command_queue_ptr get_command_queue(uint32_t id);
public:
const std::vector<device_info> get_devices() const;
const std::vector<device_info> get_devices() const;
private:
static inline opencl_metainfo* create_singleton() {
return new opencl_metainfo;
}
static inline opencl_metainfo* create_singleton() {
return new opencl_metainfo;
}
void initialize();
void dispose();
void destroy();
context_ptr m_context;
std::vector<device_info> m_devices;
void initialize();
void dispose();
void destroy();
context_ptr m_context;
std::vector<device_info> m_devices;
};
opencl_metainfo* get_opencl_metainfo();
......
......@@ -28,7 +28,7 @@
namespace caf {
namespace opencl {
template<typename Signature>
template <typename Signature>
class actor_facade;
/**
......@@ -36,26 +36,24 @@ class actor_facade;
*/
class program {
template<typename Signature>
friend class actor_facade;
template <typename Signature>
friend class actor_facade;
public:
/**
* @brief Factory method, that creates a cppa::opencl::program
* from a given @p kernel_source.
* @returns A program object.
*/
static program create(const char* kernel_source, const char* options = nullptr, uint32_t device_id = 0);
/**
* @brief Factory method, that creates a cppa::opencl::program
* from a given @p kernel_source.
* @returns A program object.
*/
static program create(const char* kernel_source,
const char* options = nullptr, uint32_t device_id = 0);
private:
program(context_ptr context, command_queue_ptr queue, program_ptr program);
program(context_ptr context, command_queue_ptr queue, program_ptr program);
context_ptr m_context;
program_ptr m_program;
command_queue_ptr m_queue;
context_ptr m_context;
program_ptr m_program;
command_queue_ptr m_queue;
};
} // namespace opencl
......
......@@ -27,86 +27,84 @@
namespace caf {
namespace opencl {
template<typename T, cl_int (*ref)(T), cl_int (*deref)(T)>
template <typename T, cl_int (*ref)(T), cl_int (*deref)(T)>
class smart_ptr {
typedef typename std::remove_pointer<T>::type element_type;
typedef element_type* pointer;
typedef element_type& reference;
typedef const element_type* const_pointer;
typedef const element_type& const_reference;
typedef typename std::remove_pointer<T>::type element_type;
typedef element_type* pointer;
typedef element_type& reference;
typedef const element_type* const_pointer;
typedef const element_type& const_reference;
public:
smart_ptr(pointer ptr = nullptr) : m_ptr(ptr) {
if (m_ptr)
ref(m_ptr);
}
smart_ptr(pointer ptr = nullptr) : m_ptr(ptr) {
if (m_ptr) ref(m_ptr);
}
~smart_ptr() { reset(); }
~smart_ptr() { reset(); }
smart_ptr(const smart_ptr& other) : m_ptr(other.m_ptr) {
if (m_ptr) ref(m_ptr);
}
smart_ptr(const smart_ptr& other) : m_ptr(other.m_ptr) {
if (m_ptr)
ref(m_ptr);
}
smart_ptr(smart_ptr&& other) : m_ptr(other.m_ptr) {
other.m_ptr = nullptr;
}
smart_ptr(smart_ptr&& other) : m_ptr(other.m_ptr) { other.m_ptr = nullptr; }
smart_ptr& operator=(pointer ptr) {
reset(ptr);
return *this;
}
smart_ptr& operator=(pointer ptr) {
reset(ptr);
return *this;
}
smart_ptr& operator=(smart_ptr&& other) {
std::swap(m_ptr, other.m_ptr);
return *this;
}
smart_ptr& operator=(smart_ptr&& other) {
std::swap(m_ptr, other.m_ptr);
return *this;
}
smart_ptr& operator=(const smart_ptr& other) {
smart_ptr tmp{other};
std::swap(m_ptr, tmp.m_ptr);
return *this;
}
smart_ptr& operator=(const smart_ptr& other) {
smart_ptr tmp{other};
std::swap(m_ptr, tmp.m_ptr);
return *this;
}
inline void reset(pointer ptr = nullptr) {
if (m_ptr) deref(m_ptr);
m_ptr = ptr;
if (ptr) ref(ptr);
}
inline void reset(pointer ptr = nullptr) {
if (m_ptr)
deref(m_ptr);
m_ptr = ptr;
if (ptr)
ref(ptr);
}
// does not modify reference count of ptr
inline void adopt(pointer ptr) {
reset();
m_ptr = ptr;
}
// does not modify reference count of ptr
inline void adopt(pointer ptr) {
reset();
m_ptr = ptr;
}
inline pointer get() const { return m_ptr; }
inline pointer get() const { return m_ptr; }
inline pointer operator->() const { return m_ptr; }
inline pointer operator->() const { return m_ptr; }
inline reference operator*() const { return *m_ptr; }
inline reference operator*() const { return *m_ptr; }
inline bool operator!() const { return m_ptr == nullptr; }
inline bool operator!() const { return m_ptr == nullptr; }
inline explicit operator bool() const { return m_ptr != nullptr; }
inline explicit operator bool() const { return m_ptr != nullptr; }
private:
pointer m_ptr;
pointer m_ptr;
};
typedef smart_ptr<cl_mem, clRetainMemObject, clReleaseMemObject> mem_ptr;
typedef smart_ptr<cl_event, clRetainEvent, clReleaseEvent> event_ptr;
typedef smart_ptr<cl_kernel, clRetainKernel, clReleaseKernel> kernel_ptr;
typedef smart_ptr<cl_event, clRetainEvent, clReleaseEvent> event_ptr;
typedef smart_ptr<cl_kernel, clRetainKernel, clReleaseKernel> kernel_ptr;
typedef smart_ptr<cl_context, clRetainContext, clReleaseContext> context_ptr;
typedef smart_ptr<cl_program, clRetainProgram, clReleaseProgram> program_ptr;
typedef smart_ptr<cl_device_id, clRetainDeviceDummy, clReleaseDeviceDummy>
device_ptr;
device_ptr;
typedef smart_ptr<cl_command_queue, clRetainCommandQueue, clReleaseCommandQueue>
command_queue_ptr;
command_queue_ptr;
} // namespace opencl
} // namespace caf
......
......@@ -38,64 +38,57 @@ namespace caf {
namespace detail {
// converts C arrays, i.e., pointers, to vectors
template<typename T>
struct carr_to_vec { typedef T type; };
template <typename T>
struct carr_to_vec {
typedef T type;
};
template<typename T>
struct carr_to_vec<T*> { typedef std::vector<T> type; };
template <typename T>
struct carr_to_vec<T*> {
typedef std::vector<T> type;
};
template<typename Signature, typename SecondSignature = void>
template <typename Signature, typename SecondSignature = void>
struct cl_spawn_helper;
template<typename R, typename... Ts>
struct cl_spawn_helper<R (Ts...), void> {
using result_type = typename carr_to_vec<R>::type;
using impl = opencl::actor_facade<
result_type (typename carr_to_vec<
typename carr_to_vec<Ts>::type
>::type...)
>;
using map_arg_fun = typename impl::arg_mapping;
using map_res_fun = typename impl::result_mapping;
template<typename... Us>
actor operator()(map_arg_fun f0,
map_res_fun f1,
const opencl::program& p,
const char* fname,
Us&&... args) const {
using std::move;
using std::forward;
return impl::create(p, fname, move(f0), move(f1), forward<Us>(args)...);
}
template<typename... Us>
actor operator()(const opencl::program& p,
const char* fname,
Us&&... args) const {
using std::move;
using std::forward;
map_arg_fun f0 = [] (any_tuple msg) {
return tuple_cast<
typename util::rm_const_and_ref<
typename carr_to_vec<Ts>::type
>::type...
>(msg);
};
map_res_fun f1 = [] (result_type& result) {
return make_any_tuple(move(result));
};
return impl::create(p, fname, move(f0), move(f1), forward<Us>(args)...);
}
template <typename R, typename... Ts>
struct cl_spawn_helper<R(Ts...), void> {
using result_type = typename carr_to_vec<R>::type;
using impl = opencl::actor_facade<
result_type(typename carr_to_vec<typename carr_to_vec<Ts>::type>::type...)>;
using map_arg_fun = typename impl::arg_mapping;
using map_res_fun = typename impl::result_mapping;
template <typename... Us>
actor operator()(map_arg_fun f0, map_res_fun f1, const opencl::program& p,
const char* fname, Us&&... args) const {
using std::move;
using std::forward;
return impl::create(p, fname, move(f0), move(f1), forward<Us>(args)...);
}
template <typename... Us>
actor operator()(const opencl::program& p, const char* fname,
Us&&... args) const {
using std::move;
using std::forward;
map_arg_fun f0 = [](any_tuple msg) {
return tuple_cast<typename util::rm_const_and_ref<
typename carr_to_vec<Ts>::type>::type...>(msg);
};
map_res_fun f1 = [](result_type& result) {
return make_any_tuple(move(result));
};
return impl::create(p, fname, move(f0), move(f1), forward<Us>(args)...);
}
};
template<typename R, typename... Ts>
struct cl_spawn_helper<std::function<optional<cow_tuple<Ts...>> (any_tuple)>,
std::function<any_tuple (R&)>>
: cl_spawn_helper<R (Ts...)> { };
template <typename R, typename... Ts>
struct cl_spawn_helper<std::function<optional<cow_tuple<Ts...>>(any_tuple)>,
std::function<any_tuple(R&)>>
: cl_spawn_helper<R(Ts...)> {};
} // namespace detail
......@@ -106,16 +99,14 @@ struct cl_spawn_helper<std::function<optional<cow_tuple<Ts...>> (any_tuple)>,
* <tt>dims.empty()</tt>, or @p clCreateKernel
* failed.
*/
template<typename Signature, typename... Ts>
inline actor spawn_cl(const opencl::program& prog,
const char* fname,
const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {},
size_t result_size = 0) {
using std::move;
detail::cl_spawn_helper<Signature> f;
return f(prog, fname, dims, offset, local_dims, result_size);
template <typename Signature, typename... Ts>
inline actor
spawn_cl(const opencl::program& prog, const char* fname,
const opencl::dim_vec& dims, const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {}, size_t result_size = 0) {
using std::move;
detail::cl_spawn_helper<Signature> f;
return f(prog, fname, dims, offset, local_dims, result_size);
}
/**
......@@ -125,20 +116,14 @@ inline actor spawn_cl(const opencl::program& prog,
* <tt>dims.empty()</tt>, a compilation error
* occured, or @p clCreateKernel failed.
*/
template<typename Signature, typename... Ts>
inline actor spawn_cl(const char* source,
const char* fname,
const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {},
size_t result_size = 0) {
using std::move;
return spawn_cl<Signature, Ts...>(opencl::program::create(source),
fname,
dims,
offset,
local_dims,
result_size);
template <typename Signature, typename... Ts>
inline actor
spawn_cl(const char* source, const char* fname, const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {}, size_t result_size = 0) {
using std::move;
return spawn_cl<Signature, Ts...>(opencl::program::create(source), fname,
dims, offset, local_dims, result_size);
}
/**
......@@ -150,27 +135,18 @@ inline actor spawn_cl(const char* source,
* <tt>dims.empty()</tt>, or @p clCreateKernel
* failed.
*/
template<typename MapArgs, typename MapResult>
inline actor spawn_cl(const opencl::program& prog,
const char* fname,
MapArgs map_args,
MapResult map_result,
const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {},
size_t result_size = 0) {
using std::move;
typedef typename util::get_callable_trait<MapArgs>::fun_type f0;
typedef typename util::get_callable_trait<MapResult>::fun_type f1;
detail::cl_spawn_helper<f0, f1> f;
return f(f0{move(map_args)},
f1{move(map_result)},
prog,
fname,
dims,
offset,
local_dims,
result_size);
template <typename MapArgs, typename MapResult>
inline actor
spawn_cl(const opencl::program& prog, const char* fname, MapArgs map_args,
MapResult map_result, const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {}, size_t result_size = 0) {
using std::move;
typedef typename util::get_callable_trait<MapArgs>::fun_type f0;
typedef typename util::get_callable_trait<MapResult>::fun_type f1;
detail::cl_spawn_helper<f0, f1> f;
return f(f0{move(map_args)}, f1{move(map_result)}, prog, fname, dims, offset,
local_dims, result_size);
}
/**
......@@ -182,24 +158,15 @@ inline actor spawn_cl(const opencl::program& prog,
* <tt>dims.empty()</tt>, a compilation error
* occured, or @p clCreateKernel failed.
*/
template<typename MapArgs, typename MapResult>
inline actor spawn_cl(const char* source,
const char* fun_name,
MapArgs map_args,
MapResult map_result,
const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {},
size_t result_size = 0) {
using std::move;
return spawn_cl(opencl::program::create(source),
fun_name,
move(map_args),
move(map_result),
dims,
offset,
local_dims,
result_size);
template <typename MapArgs, typename MapResult>
inline actor
spawn_cl(const char* source, const char* fun_name, MapArgs map_args,
MapResult map_result, const opencl::dim_vec& dims,
const opencl::dim_vec& offset = {},
const opencl::dim_vec& local_dims = {}, size_t result_size = 0) {
using std::move;
return spawn_cl(opencl::program::create(source), fun_name, move(map_args),
move(map_result), dims, offset, local_dims, result_size);
}
} // namespace caf
......
......@@ -23,108 +23,108 @@ namespace caf {
namespace opencl {
std::string get_opencl_error(cl_int err) {
switch (err) {
switch (err) {
case CL_SUCCESS:
return "CL_SUCCESS";
return "CL_SUCCESS";
case CL_DEVICE_NOT_FOUND:
return "CL_DEVICE_NOT_FOUND";
return "CL_DEVICE_NOT_FOUND";
case CL_DEVICE_NOT_AVAILABLE:
return "CL_DEVICE_NOT_AVAILABLE";
return "CL_DEVICE_NOT_AVAILABLE";
case CL_COMPILER_NOT_AVAILABLE:
return "CL_COMPILER_NOT_AVAILABLE";
return "CL_COMPILER_NOT_AVAILABLE";
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
return "CL_MEM_OBJECT_ALLOCATION_FAILURE";
return "CL_MEM_OBJECT_ALLOCATION_FAILURE";
case CL_OUT_OF_RESOURCES:
return "CL_OUT_OF_RESOURCES";
return "CL_OUT_OF_RESOURCES";
case CL_OUT_OF_HOST_MEMORY:
return "CL_OUT_OF_HOST_MEMORY";
return "CL_OUT_OF_HOST_MEMORY";
case CL_PROFILING_INFO_NOT_AVAILABLE:
return "CL_PROFILING_INFO_NOT_AVAILABLE";
return "CL_PROFILING_INFO_NOT_AVAILABLE";
case CL_MEM_COPY_OVERLAP:
return "CL_MEM_COPY_OVERLAP";
return "CL_MEM_COPY_OVERLAP";
case CL_IMAGE_FORMAT_MISMATCH:
return "CL_IMAGE_FORMAT_MISMATCH";
return "CL_IMAGE_FORMAT_MISMATCH";
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
return "CL_IMAGE_FORMAT_NOT_SUPPORTED";
return "CL_IMAGE_FORMAT_NOT_SUPPORTED";
case CL_BUILD_PROGRAM_FAILURE:
return "CL_BUILD_PROGRAM_FAILURE";
return "CL_BUILD_PROGRAM_FAILURE";
case CL_MAP_FAILURE:
return "CL_MAP_FAILURE";
return "CL_MAP_FAILURE";
case CL_INVALID_VALUE:
return "CL_INVALID_VALUE";
return "CL_INVALID_VALUE";
case CL_INVALID_DEVICE_TYPE:
return "CL_INVALID_DEVICE_TYPE";
return "CL_INVALID_DEVICE_TYPE";
case CL_INVALID_PLATFORM:
return "CL_INVALID_PLATFORM";
return "CL_INVALID_PLATFORM";
case CL_INVALID_DEVICE:
return "CL_INVALID_DEVICE";
return "CL_INVALID_DEVICE";
case CL_INVALID_CONTEXT:
return "CL_INVALID_CONTEXT";
return "CL_INVALID_CONTEXT";
case CL_INVALID_QUEUE_PROPERTIES:
return "CL_INVALID_QUEUE_PROPERTIES";
return "CL_INVALID_QUEUE_PROPERTIES";
case CL_INVALID_COMMAND_QUEUE:
return "CL_INVALID_COMMAND_QUEUE";
return "CL_INVALID_COMMAND_QUEUE";
case CL_INVALID_HOST_PTR:
return "CL_INVALID_HOST_PTR";
return "CL_INVALID_HOST_PTR";
case CL_INVALID_MEM_OBJECT:
return "CL_INVALID_MEM_OBJECT";
return "CL_INVALID_MEM_OBJECT";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
return "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
return "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
case CL_INVALID_IMAGE_SIZE:
return "CL_INVALID_IMAGE_SIZE";
return "CL_INVALID_IMAGE_SIZE";
case CL_INVALID_SAMPLER:
return "CL_INVALID_SAMPLER";
return "CL_INVALID_SAMPLER";
case CL_INVALID_BINARY:
return "CL_INVALID_BINARY";
return "CL_INVALID_BINARY";
case CL_INVALID_BUILD_OPTIONS:
return "CL_INVALID_BUILD_OPTIONS";
return "CL_INVALID_BUILD_OPTIONS";
case CL_INVALID_PROGRAM:
return "CL_INVALID_PROGRAM";
return "CL_INVALID_PROGRAM";
case CL_INVALID_PROGRAM_EXECUTABLE:
return "CL_INVALID_PROGRAM_EXECUTABLE";
return "CL_INVALID_PROGRAM_EXECUTABLE";
case CL_INVALID_KERNEL_NAME:
return "CL_INVALID_KERNEL_NAME";
return "CL_INVALID_KERNEL_NAME";
case CL_INVALID_KERNEL_DEFINITION:
return "CL_INVALID_KERNEL_DEFINITION";
return "CL_INVALID_KERNEL_DEFINITION";
case CL_INVALID_KERNEL:
return "CL_INVALID_KERNEL";
return "CL_INVALID_KERNEL";
case CL_INVALID_ARG_INDEX:
return "CL_INVALID_ARG_INDEX";
return "CL_INVALID_ARG_INDEX";
case CL_INVALID_ARG_VALUE:
return "CL_INVALID_ARG_VALUE";
return "CL_INVALID_ARG_VALUE";
case CL_INVALID_ARG_SIZE:
return "CL_INVALID_ARG_SIZE";
return "CL_INVALID_ARG_SIZE";
case CL_INVALID_KERNEL_ARGS:
return "CL_INVALID_KERNEL_ARGS";
return "CL_INVALID_KERNEL_ARGS";
case CL_INVALID_WORK_DIMENSION:
return "CL_INVALID_WORK_DIMENSION";
return "CL_INVALID_WORK_DIMENSION";
case CL_INVALID_WORK_GROUP_SIZE:
return "CL_INVALID_WORK_GROUP_SIZE";
return "CL_INVALID_WORK_GROUP_SIZE";
case CL_INVALID_WORK_ITEM_SIZE:
return "CL_INVALID_WORK_ITEM_SIZE";
return "CL_INVALID_WORK_ITEM_SIZE";
case CL_INVALID_GLOBAL_OFFSET:
return "CL_INVALID_GLOBAL_OFFSET";
return "CL_INVALID_GLOBAL_OFFSET";
case CL_INVALID_EVENT_WAIT_LIST:
return "CL_INVALID_EVENT_WAIT_LIST";
return "CL_INVALID_EVENT_WAIT_LIST";
case CL_INVALID_EVENT:
return "CL_INVALID_EVENT";
return "CL_INVALID_EVENT";
case CL_INVALID_OPERATION:
return "CL_INVALID_OPERATION";
return "CL_INVALID_OPERATION";
case CL_INVALID_GL_OBJECT:
return "CL_INVALID_GL_OBJECT";
return "CL_INVALID_GL_OBJECT";
case CL_INVALID_BUFFER_SIZE:
return "CL_INVALID_BUFFER_SIZE";
return "CL_INVALID_BUFFER_SIZE";
case CL_INVALID_MIP_LEVEL:
return "CL_INVALID_MIP_LEVEL";
return "CL_INVALID_MIP_LEVEL";
case CL_INVALID_GLOBAL_WORK_SIZE:
return "CL_INVALID_GLOBAL_WORK_SIZE";
default: return "UNKNOWN_ERROR";
}
return "CL_INVALID_GLOBAL_WORK_SIZE";
default:
return "UNKNOWN_ERROR";
}
}
cl_int clReleaseDeviceDummy (cl_device_id) { return 0; }
cl_int clRetainDeviceDummy (cl_device_id) { return 0; }
cl_int clReleaseDeviceDummy(cl_device_id) { return 0; }
cl_int clRetainDeviceDummy(cl_device_id) { return 0; }
} // namespace opencl
} // namespace caf
......@@ -25,186 +25,152 @@ namespace caf {
namespace opencl {
const std::vector<device_info> opencl_metainfo::get_devices() const {
return m_devices;
return m_devices;
}
void opencl_metainfo::initialize()
{
cl_int err{0};
// get number of available platforms
cl_uint number_of_platforms;
err = clGetPlatformIDs(0, nullptr, &number_of_platforms);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetPlatformIDs (getting number of platforms): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw logic_error(oss.str());
}
// get platform ids
vector<cl_platform_id> ids(number_of_platforms);
err = clGetPlatformIDs(ids.size(), ids.data(), nullptr);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetPlatformIDs (getting platform ids): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw logic_error(oss.str());
}
// find gpu devices on our platform
int pid{0};
cl_uint num_devices{0};
cl_device_type dev_type{CL_DEVICE_TYPE_GPU};
void opencl_metainfo::initialize() {
cl_int err{0};
// get number of available platforms
cl_uint number_of_platforms;
err = clGetPlatformIDs(0, nullptr, &number_of_platforms);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetPlatformIDs (getting number of platforms): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw logic_error(oss.str());
}
// get platform ids
vector<cl_platform_id> ids(number_of_platforms);
err = clGetPlatformIDs(ids.size(), ids.data(), nullptr);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetPlatformIDs (getting platform ids): " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw logic_error(oss.str());
}
// find gpu devices on our platform
int pid{0};
cl_uint num_devices{0};
cl_device_type dev_type{CL_DEVICE_TYPE_GPU};
err = clGetDeviceIDs(ids[pid], dev_type, 0, nullptr, &num_devices);
if (err == CL_DEVICE_NOT_FOUND) {
CPPA_LOG_TRACE("No gpu devices found. Looking for cpu devices.");
cout << "No gpu devices found. Looking for cpu devices." << endl;
dev_type = CL_DEVICE_TYPE_CPU;
err = clGetDeviceIDs(ids[pid], dev_type, 0, nullptr, &num_devices);
if (err == CL_DEVICE_NOT_FOUND) {
CPPA_LOG_TRACE("No gpu devices found. Looking for cpu devices.");
cout << "No gpu devices found. Looking for cpu devices." << endl;
dev_type = CL_DEVICE_TYPE_CPU;
err = clGetDeviceIDs(ids[pid], dev_type, 0, nullptr, &num_devices);
}
}
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceIDs: " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
vector<cl_device_id> devices(num_devices);
err =
clGetDeviceIDs(ids[pid], dev_type, num_devices, devices.data(), nullptr);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceIDs: " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
auto pfn_notify = [](const char* errinfo, const void*, size_t, void*) {
CPPA_LOGC_ERROR("cppa::opencl::opencl_metainfo", "initialize",
"\n##### Error message via pfn_notify #####\n" +
string(errinfo) +
"\n########################################");
};
// create a context
m_context.adopt(clCreateContext(0, devices.size(), devices.data(), pfn_notify,
nullptr, &err));
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clCreateContext: " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
for (auto& d : devices) {
CPPA_LOG_TRACE("Creating command queue for device(s).");
device_ptr device;
device.adopt(d);
size_t return_size{0};
static constexpr size_t buf_size = 128;
char buf[buf_size];
err = clGetDeviceInfo(device.get(), CL_DEVICE_NAME, buf_size, buf,
&return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceIDs: " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
CPPA_LOGMF(CPPA_ERROR,
"clGetDeviceInfo (CL_DEVICE_NAME): " << get_opencl_error(err));
fill(buf, buf + buf_size, 0);
}
vector<cl_device_id> devices(num_devices);
err = clGetDeviceIDs(ids[pid], dev_type, num_devices, devices.data(), nullptr);
command_queue_ptr cmd_queue;
cmd_queue.adopt(clCreateCommandQueue(m_context.get(), device.get(),
CL_QUEUE_PROFILING_ENABLE, &err));
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_DEBUG, "Could not create command queue for device "
<< buf << ": " << get_opencl_error(err));
} else {
size_t max_work_group_size{0};
err = clGetDeviceInfo(device.get(), CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(size_t), &max_work_group_size, &return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceIDs: " << get_opencl_error(err);
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_GROUP_SIZE): " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
auto pfn_notify = [](const char *errinfo,
const void *,
size_t,
void *) {
CPPA_LOGC_ERROR("cppa::opencl::opencl_metainfo",
"initialize",
"\n##### Error message via pfn_notify #####\n" +
string(errinfo) +
"\n########################################");
};
// create a context
m_context.adopt(clCreateContext(0,
devices.size(),
devices.data(),
pfn_notify,
nullptr,
&err));
if (err != CL_SUCCESS) {
}
cl_uint max_work_item_dimensions = 0;
err = clGetDeviceInfo(device.get(), CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
sizeof(cl_uint), &max_work_item_dimensions,
&return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clCreateContext: " << get_opencl_error(err);
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS): " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
for (auto& d : devices) {
CPPA_LOG_TRACE("Creating command queue for device(s).");
device_ptr device;
device.adopt(d);
size_t return_size{0};
static constexpr size_t buf_size = 128;
char buf[buf_size];
err = clGetDeviceInfo(device.get(), CL_DEVICE_NAME, buf_size, buf, &return_size);
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_ERROR, "clGetDeviceInfo (CL_DEVICE_NAME): "
<< get_opencl_error(err));
fill(buf, buf+buf_size, 0);
}
command_queue_ptr cmd_queue;
cmd_queue.adopt(clCreateCommandQueue(m_context.get(),
device.get(),
CL_QUEUE_PROFILING_ENABLE,
&err));
if (err != CL_SUCCESS) {
CPPA_LOGMF(CPPA_DEBUG, "Could not create command queue for device "
<< buf << ": " << get_opencl_error(err));
}
else {
size_t max_work_group_size{0};
err = clGetDeviceInfo(device.get(),
CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(size_t),
&max_work_group_size,
&return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_GROUP_SIZE): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
cl_uint max_work_item_dimensions = 0;
err = clGetDeviceInfo(device.get(),
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
sizeof(cl_uint),
&max_work_item_dimensions,
&return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
dim_vec max_work_items_per_dim(max_work_item_dimensions);
err = clGetDeviceInfo(device.get(),
CL_DEVICE_MAX_WORK_ITEM_SIZES,
sizeof(size_t)*max_work_item_dimensions,
max_work_items_per_dim.data(),
&return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_ITEM_SIZES): "
<< get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
device_info dev_info{device,
cmd_queue,
max_work_group_size,
max_work_item_dimensions,
max_work_items_per_dim};
m_devices.push_back(move(dev_info));
}
}
if (m_devices.empty()) {
}
dim_vec max_work_items_per_dim(max_work_item_dimensions);
err = clGetDeviceInfo(device.get(), CL_DEVICE_MAX_WORK_ITEM_SIZES,
sizeof(size_t) * max_work_item_dimensions,
max_work_items_per_dim.data(), &return_size);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "Could not create a command queue for "
<< "any present device.";
oss << "clGetDeviceInfo ("
<< "CL_DEVICE_MAX_WORK_ITEM_SIZES): " << get_opencl_error(err);
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
device_info dev_info{device, cmd_queue, max_work_group_size,
max_work_item_dimensions, max_work_items_per_dim};
m_devices.push_back(move(dev_info));
}
}
if (m_devices.empty()) {
ostringstream oss;
oss << "Could not create a command queue for "
<< "any present device.";
CPPA_LOGMF(CPPA_ERROR, oss.str());
throw runtime_error(oss.str());
}
}
void opencl_metainfo::destroy() {
delete this;
}
void opencl_metainfo::destroy() { delete this; }
void opencl_metainfo::dispose() {
delete this;
}
void opencl_metainfo::dispose() { delete this; }
opencl_metainfo* get_opencl_metainfo() {
return detail::singleton_manager::get_opencl_metainfo();
return detail::singleton_manager::get_opencl_metainfo();
}
} // namespace opencl
} // namespace caf
......@@ -31,83 +31,73 @@ using namespace std;
namespace caf {
namespace opencl {
program::program(context_ptr context, command_queue_ptr queue, program_ptr program)
: m_context(move(context)), m_program(move(program)), m_queue(move(queue)) { }
program program::create(const char* kernel_source, const char* options, uint32_t device_id) {
auto metainfo = get_opencl_metainfo();
auto devices = metainfo->get_devices();
auto context = metainfo->m_context;
if (devices.size() <= device_id) {
ostringstream oss;
oss << "Device id " << device_id
<< " is not a vaild device. Maximum id is: "
<< (devices.size() -1) << ".";
CPPA_LOGM_ERROR(detail::demangle<program>().c_str(), oss.str());
throw runtime_error(oss.str());
}
cl_int err{0};
// create program object from kernel source
size_t kernel_source_length = strlen(kernel_source);
program_ptr pptr;
pptr.adopt(clCreateProgramWithSource(context.get(),
1,
&kernel_source,
&kernel_source_length,
&err));
if (err != CL_SUCCESS) {
throw runtime_error("clCreateProgramWithSource: "
+ get_opencl_error(err));
}
// build programm from program object
auto dev_tmp = devices[device_id].m_device.get();
err = clBuildProgram(pptr.get(), 1, &dev_tmp, options, nullptr, nullptr);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clBuildProgram: " << get_opencl_error(err);
// the build log will be printed by the
// pfn_notify (see opencl_metainfo.cpp)
program::program(context_ptr context, command_queue_ptr queue,
program_ptr program)
: m_context(move(context))
, m_program(move(program))
, m_queue(move(queue)) {}
program program::create(const char* kernel_source, const char* options,
uint32_t device_id) {
auto metainfo = get_opencl_metainfo();
auto devices = metainfo->get_devices();
auto context = metainfo->m_context;
if (devices.size() <= device_id) {
ostringstream oss;
oss << "Device id " << device_id
<< " is not a vaild device. Maximum id is: " << (devices.size() - 1)
<< ".";
CPPA_LOGM_ERROR(detail::demangle<program>().c_str(), oss.str());
throw runtime_error(oss.str());
}
cl_int err{0};
// create program object from kernel source
size_t kernel_source_length = strlen(kernel_source);
program_ptr pptr;
pptr.adopt(clCreateProgramWithSource(context.get(), 1, &kernel_source,
&kernel_source_length, &err));
if (err != CL_SUCCESS) {
throw runtime_error("clCreateProgramWithSource: " + get_opencl_error(err));
}
// build programm from program object
auto dev_tmp = devices[device_id].m_device.get();
err = clBuildProgram(pptr.get(), 1, &dev_tmp, options, nullptr, nullptr);
if (err != CL_SUCCESS) {
ostringstream oss;
oss << "clBuildProgram: " << get_opencl_error(err);
// the build log will be printed by the
// pfn_notify (see opencl_metainfo.cpp)
#ifndef __APPLE__
// seems that just apple implemented the
// pfn_notify callback, but we can get
// the build log
if(err == CL_BUILD_PROGRAM_FAILURE) {
size_t buildlog_buffer_size = 0;
// get the log length
clGetProgramBuildInfo(pptr.get(),
dev_tmp,
CL_PROGRAM_BUILD_LOG,
sizeof(buildlog_buffer_size),
nullptr,
&buildlog_buffer_size);
vector<char> buffer(buildlog_buffer_size);
// fill the buffer with buildlog informations
clGetProgramBuildInfo(pptr.get(),
dev_tmp,
CL_PROGRAM_BUILD_LOG,
sizeof(buffer[0]) * buildlog_buffer_size,
buffer.data(),
nullptr);
CPPA_LOGC_ERROR("cppa::opencl::program",
"create",
"Build log:\n" + string(buffer.data()) +
"\n########################################");
}
#endif
throw runtime_error(oss.str());
// seems that just apple implemented the
// pfn_notify callback, but we can get
// the build log
if (err == CL_BUILD_PROGRAM_FAILURE) {
size_t buildlog_buffer_size = 0;
// get the log length
clGetProgramBuildInfo(pptr.get(), dev_tmp, CL_PROGRAM_BUILD_LOG,
sizeof(buildlog_buffer_size), nullptr,
&buildlog_buffer_size);
vector<char> buffer(buildlog_buffer_size);
// fill the buffer with buildlog informations
clGetProgramBuildInfo(pptr.get(), dev_tmp, CL_PROGRAM_BUILD_LOG,
sizeof(buffer[0]) * buildlog_buffer_size,
buffer.data(), nullptr);
CPPA_LOGC_ERROR("cppa::opencl::program", "create",
"Build log:\n" + string(buffer.data()) +
"\n########################################");
}
return {context, devices[device_id].m_cmd_queue, pptr};
#endif
throw runtime_error(oss.str());
}
return {context, devices[device_id].m_cmd_queue, pptr};
}
} // namespace opencl
} // namespace caf
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment