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FIRST STEPS

1 First Steps

To compile libcppa, you will need CMake, the Boost Library and a C++11 compiler. To get and
compile the sources, open a terminal and type:

git clone git://github.com/Neverlord/libcppa.git
cd libcppa
./configure
make
make install [as root, optional]

It is recommended to run the unit tests as well:

make test

Please submit a bug report that includes (a) your compiler version, (b) your OS, and (c) the content
of the file build/Testing/Temporary/LastTest.log if an error occurs.

1.1 Features Overview

• Lightweight, fast and efficient actor implementations
• Network transparent messaging
• Error handling based on Erlang’s failure model
• Pattern matching for messages as internal DSL to ease development
• Thread-mapped actors and on-the-fly conversions for soft migration of existing applications
• Group communication based on Publish/Subscribe

1.2 Supported Compilers

• GCC ≥ 4.7
• Clang ≥ 3.2

1.3 Supported Operating Systems

• Linux
• Mac OS X
• Note for MS Windows: libcppa relies on C++11 features such as variadic templates. We

will support this platform as soon as Microsoft’s compiler implements all required C++11
features.
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1.4 Hello World Example

#include <string>
#include <iostream>
#include "cppa/cppa.hpp"

using namespace cppa;

void echo_actor() {
// wait for a message
receive (

// invoke this lambda expression if we receive a string
on<std::string>() >> [](const std::string& what) {

// prints "Hello World!"
std::cout << what << std::endl;
// replies "!dlroW olleH"
reply(std::string(what.rbegin(), what.rend()));

}
);

}

int main() {
// create a new actor that invokes the function echo_actor
auto hello_actor = spawn(echo_actor);
// send "Hello World!" to our new actor
// note: libcppa converts string literals to std::string
send(hello_actor, "Hello World!");
// wait for a response and print it
receive (

on<std::string>() >> [](const std::string& what) {
// prints "!dlroW olleH"
std::cout << what << std::endl;

}
);
// wait until all other actors we’ve spawned are done
await_all_others_done();
// done
shutdown();
return 0;

}
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2 Copy-On-Write Tuples

The message passing implementation of libcppa uses tuples with call-by-value semantic. Hence,
it is not necessary to declare message types, though, libcppa allows users to use user-defined
types in messages (see Section 12.1). A call-by-value semantic would cause multiple copies of a
tuple if it is send to multiple actors. To avoid unnecessary copying overhead, libcppa uses a
copy-on-write tuple implementation. A tuple is implicitly shared between any number of actors, as
long as all actors demand only read access. Whenever an actor demands write access, it has to
copy the data first if more than one reference to it exist. Thus, race conditions cannot occur and
each tuple is copied only if necessary.

The interface of cow_tuple strictly distinguishes between const and non-const access. The
template function get returns an element as immutable value, while get_ref explicitly returns a
mutable reference to the required value and detaches the tuple if needed. We do not provide a
const overload for get, because this would cause to unintended, and thus unnecessary, copying
overhead.

auto x1 = make_cow_tuple(1, 2, 3); // cow_tuple<int, int, int>
auto x2 = x1; // cow_tuple<int, int, int>
assert(&get<0>(x1) == &get<0>(x2)); // point to the same data
get_ref<0>(x1) = 10; // detaches x1 from x2
//get<0>(x1) = 10; // compiler error
assert(get<0>(x1) == 10); // x1 is now {10, 2, 3}
assert(get<0>(x2) == 1); // x2 is still {1, 2, 3}
assert(&get<0>(x1) != &get<0>(x2)); // no longer the same

2.1 Dynamically Typed Tuples

The class any_tuple represents a tuple without static type information. All messages send
between actors use this tuple type. The type information can be either explicitly accessed for each
element or the original tuple, or a subtuple of it, can be restored using tuple_cast. Users of
libcppa usually do not need to know about any_tuple, since it is used “behind the scenes”.
However, any_tuple can be created from a cow_tuple or by using make_any_tuple, as
shown below.

auto x1 = make_cow_tuple(1, 2, 3); // cow_tuple<int, int, int>
any_tuple x2 = x1; // any_tuple
any_tuple x3 = make_cow_tuple(10, 20); // any_tuple
auto x4 = make_any_tuple(42); // any_tuple
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2.2 Casting Tuples

The function tuple_cast restores static type information from an any_tuple object. It returns
an option (see Section 14.1) for a cow_tuple of the requested types.

auto x1 = make_any_tuple(1, 2, 3);
auto x2_opt = tuple_cast<int, int, int>(x1);
assert(x2_opt.valid());
auto x2 = *x2_opt;
assert(get<0>(x2) == 1);
assert(get<1>(x2) == 2);
assert(get<2>(x2) == 3);

The function tuple_cast can be used with wildcards (see Section 3.4) to create a view to a
subset of the original data. No elements are copied, unless the tuple becomes detached.

auto x1 = make_cow_tuple(1, 2, 3);
any_tuple x2 = x1;
auto x3_opt = tuple_cast<int, anything, int>(x2);
assert(x3_opt.valid());
auto x3 = *x3_opt;
assert(get<0>(x3) == 1);
assert(get<1>(x3) == 3);
assert(&get<0>(x3) == &get<0>(x1));
assert(&get<1>(x3) == &get<2>(x1));
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3 Pattern Matching

C++ does not provide pattern matching facilities. A general pattern matching solution for arbitrary
data structures would require a language extension. Hence, we decided to restrict our implemen-
tation to tuples, to be able to use an internal domain-specific language approach.

3.1 Basics

A match expression begins with a call to the function on, which returns an intermediate object
providing the member function when and operator>>. The right-hand side of the operator
denotes a callback, usually a lambda expression, that should be invoked if a tuple matches the
types given to on, as shown in the example below.

on<int>() >> [](int i) { /*...*/ }
on<int, float>() >> [](int i, float f) { /*...*/ }
on<int, int, int>() >> [](int a, int b, int c) { /*...*/ }

The result of operator>> is a partial function that is defined for the types given to on. A comma
separated list of partial functions results in a single partial function that sequentially evaluates its
subfunctions. At most one callback is invoked, since the evaluation stops at the first match.

auto fun = (
on<int>() >> [](int i) {

// case1
},
on<int>() >> [](int i) {

// is never invoked, since case1 always matches first
}

);

Note: A list of partial function definitions must be enclosed in brackets if assigned to a variable.
Otherwise, the compiler assumes commas to separate variable definitions.

The function “on” can be used in two ways. Either with template parameters only or with function
parameters only. The latter version deduces all types from its arguments and matches for both
type and value. The template “val” can be used to match only the type of a parameter.

on(42) >> [](int i) { assert(i == 42); }
on("hello world") >> []() { /* ... */ }
on("print", val<std::string>) >> [](const std::string& what) {

// ...
}

Note: The given callback can have less arguments than given to the pattern. But it is only allowed
to skip arguments from left to right.

on<int, float, double>() >> [](double) { /*...*/ } // ok
on<int, float, double>() >> [](float, double) { /*...*/ } // ok
on<int, float, double>() >> [](int, float, double) { /*...*/ } // ok

on<int, float, double>() >> [](int i) { /*...*/ } // compiler error
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3.2 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments, performs
a predefined operation and returns the result. It cannot determine an operation, such as multiply
or add, by receiving two operands. Thus, the operation must be encoded into the message. The
Erlang programming language introduced an approach to use non-numerical constants, so-called
atoms, which have an unambiguous, special-purpose type and do not have the runtime overhead
of string constants. Atoms are mapped to integer values at compile time in libcppa. This
mapping is guaranteed to be collision-free but limits atom literals to ten characters and prohibits
special characters. Legal characters are “_0-9A-Za-z” and the whitespace character. Atoms
are created using the constexpr function atom, as the following example illustrates.

on<atom("add"), int, int>() >> [](int a, int b) { /*...*/ },
on<atom("multiply"), int, int>() >> [](int a, int b) { /*...*/ },
// ...

Note: The current implementation cannot enforce the restrictions at compile time, except for a
length check. Each invalid character is mapped to the whitespace character, why the assertion
atom("!?") != atom("?!") is not true. However, this issue will fade away after user-defined
literals become available in mainstream compilers, because it is then possible to raise a compiler
error for invalid characters.

3.3 Reducing Redundancy with “arg_match” and “on_arg_match”

Our previous example is quite verbose and redundant, since you have to type the types twice – as
template parameter and as argument type for the lambda. To avoid such redundancy, arg_match
can be used as last argument to the function on. This causes the compiler to deduce all further
types from the signature of the given callback.

on<atom("add"), int, int>() >> [](int a, int b) { /*...*/ }
// is equal to:
on(atom("add"), arg_match) >> [](int a, int b) { /*...*/ }

Note that the second version does call onwithout template parameters. Furthermore, arg_match
must be passed as last parameter. If all types should be deduced from the callback signature,
on_arg_match can be used. It is equal to on(arg_match).

on_arg_match >> [](const std::string& str) { /*...*/ }
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3.4 Wildcards

The type anything can be used as wildcard to match any number of any types. A pattern created
by on<anything>() or its alias others() is useful to define a default case. For patterns
defined without template parameters, the constexpr value any_vals can be used as function
argument. The constant any_vals is of type anything and is nothing but syntactic sugar for
defining patterns.

on<int, anything>() >> [](int i) {
// tuple with int as first element

},
on(any_vals, arg_match) >> [](int i) {

// tuple with int as last element
// "on(any_vals, arg_match)" is equal to "on(anything{}, arg_match)"

},
others() >> []() {

// everything else (default handler)
// "others()" is equal to "on<anything>()" and "on(any_vals)"

}

3.5 Guards

Guards can be used to constrain a given match statement by using placeholders, as the following
example illustrates.

using namespace cppa::placeholders; // contains _x1 - _x9

on<int>().when(_x1 % 2 == 0) >> []() {
// int is even

},
on<int>() >> []() {

// int is odd
}

Guard expressions are a lazy evaluation technique. The placeholder _x1 is substituted with the
first value of a given tuple. All binary comparison and arithmetic operators are supported, as well
as && and ||. In addition, there are two functions designed to be used in guard expressions: gref
(“guard reference”) and gcall (“guard function call”). The function gref creates a reference
wrapper. It is similar to std::ref but it is always const and “lazy”, i.e., evaluated when a tuple
arrives. A few examples to illustrate some pitfalls:

int val = 42;

on<int>().when(_x1 == val) // (1) matches if _x1 == 42
on<int>().when(_x1 == gref(val)) // (2) matches if _x1 == val
on<int>().when(_x1 == std::ref(val)) // (3) ok, because of placeholder
others().when(gref(val) == 42) // (4) matches everything

// as long as val == 42
others().when(std::ref(val) == 42) // (5) compiler error
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Statement (5) is evaluated immediately and returns a boolean, whereas statement (4) creates
a valid guard expression. Thus, you should always use gref instead of std::ref to avoid errors.

The second function, gcall, encapsulates a function call. Its usage is similar to std::bind, but
there is also a short version for unary functions: gcall(fun, _x1) is equal to _x1(fun).

auto vec_sorted = [](std::vector<int> const& vec) {
return std::is_sorted(vec.begin(), vec.end());

};

on<std::vector<int>>().when(gcall(vec_sorted, _x1)) // is equal to:
on<std::vector<int>>().when(_x1(vec_sorted)))

3.5.1 Placeholder Interface

template<int X>
struct guard_placeholder;

Member functions (x represents the value at runtime, y represents an iterable container)

size() Returns x.size()
empty() Returns x.empty()
not_empty() Returns !x.empty()
front() Returns an option (see Section 14.1) to x.front()

in(y) Returns true if y contains x, false otherwise
not_in(y) Returns !in(y)

3.5.2 Examples for Guard Expressions

using namespace std;
typedef vector<int> ivec;

vector<string> strings{"abc", "def"};

on<ivec>().when(_x1.front() == 0) >> [](const ivec& v) {
// note: we don’t have to check whether _x1 is empty in our guard,
// because ’_x1.front()’ returns an option for a
// reference to the first element
assert(v.size() >= 1);
assert(v.front() == 0);

},
on<int>().when(_x1.in({10, 20, 30})) >> [](int i) {

assert(i == 10 || i == 20 || i == 30);
},
on<string>().when(_x1.not_in(strings)) >> [](const string& str) {

assert(str != "abc" && str != "def");
},
on<string>().when(_x1.size() == 10) >> [](const string& str) {

// ...
}

8



PATTERN MATCHING

3.6 Projections and Extractors

Projections perform type conversions or extract data from a given input. If a callback expects an
integer but the received message contains a string, a projection can be used to perform a type
conversion on-the-fly. This conversion should be free of side-effects and, in particular, shall not
throw exceptions, because a failed projection is not an error. A pattern simply does not match if a
projection failed. Let us have a look at a simple example.

auto intproj = [](const string& str) -> option<int> {
char* endptr = nullptr;
int result = static_cast<int>(strtol(str.c_str(), &endptr, 10));
if (endptr != nullptr && *endptr == ’\0’) return result;
return {};

};
auto fun = (

on(intproj) >> [](int i) {
// case 1, successfully converted a string

},
on_arg_match >> [](const string& str) {

// case 2, str is not an integer
}

);

The lambda intproj is a string⇒ int projection, but note that it does not return an integer.
It returns option<int>, because the projection is not guaranteed to always succeed. An empty
option indicates, that a value does not have a valid mapping to an integer. A pattern does not
match if a projection failed.

Note: Functors used as projection must take exactly one argument and must return a value.
The types for the pattern are deduced from the functor’s signature. If the functor returns an
option<T>, then T is deduced.

9
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4 Actors

libcppa provides three actor implementations, each covering a particular use case. The class
local_actor is the base class for all implementations, except for (remote) proxy actors.

4.1 Local Actors

The class local_actor describes a local running actor. It provides a common interface for actor
operations like trapping exit messages or finishing execution.

4.1.1 “Keyword” self

The self pointer is an essential ingredient of our design. It identifies the running actor similar
to the implicit this pointer identifying an object within a member function. Unlike this, though,
self is not limited to a particular scope. The self pointer is used implicitly, whenever an actor
calls functions like send or receive, but can be accessed to use more advanced actor operations
such as linking to another actor, e.g., by calling self->link_to(other). The self pointer is
convertible to actor_ptr and local_actor*, but it is neither copyable nor assignable. Thus,
auto s = self will cause a compiler error, while actor_ptr s = self works as expected.

A thread that accesses self is converted on-the-fly to an actor if needed. Hence, “everything is
an actor” in libcppa.

4.1.2 Interface

class local_actor;

Member functions

quit(uint32_t reason = normal) Finishes execution of this actor

Observers

bool trap_exit() Checks whether this actor traps exit messages

bool chaining()
Checks whether this actor uses the “chained send”
optimization (see Section 5.2)

any_tuple last_dequeued()
Returns the last message that was dequeued from
the actor’s mailbox
Note: Only set during callback invocation

actor_ptr last_sender()
Returns the sender of the last dequeued message
Note1: Only set during callback invocation
Note2: Used by the function reply (see Section 5.1)

Modifiers

void trap_exit(bool enabled) Enables or disables trapping of exit messages
void chaining(bool enabled) Enables or disables chained send
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4.2 Types of Actors

We have already shown the differences of context-switching and event-based actors in Section 6.
Context-switching and event-based actors are scheduled cooperatively in a thread pool. Develop-
ers can opt-out of this cooperative scheduling by using thread-mapped actors.

4.2.1 Thread-Mapped Actors

This is the implicit type of all threads that were converted to actors implicitly. Furthermore, this type
is used for actors created with spawn<detached>. It is recommended to use detached actors
whenever an actor could starve other actors, e.g., by calling time-expensive, blocking system calls.
Detached actors also could be used for actors that need to stay responsive, independent of the
current work load. However, threads do not scale well. Hence, detached actors should be used
only in small numbers for long-lived actors.

4.2.2 Context-Switching Actors

Context-switching actors have an own control flow and allow developers to spawn arbitrary func-
tions as actors. The downside of context-switching actors is that each actor needs to allocate its
own stack. This seriously impacts the performance for short-lived actors and is not applicable
for large-scale actor systems. This implementations allows for an easy migration of previously
threaded application, but a system should not contain more than a few hundred context-switching
actors.

4.2.3 Event-Based Actors

This is the recommended implementation for most use cases. Event-based actors have a small
memory footprint and are thus very lightweight. The behavior-based API makes it harder to nest
receives, but this implementation clearly scales best. See Section 6.2 for a few examples.
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5 Sending Messages

Messages can be sent by using either the function send, or send_tuple, or operator<<. The
variadic template function send has the following signature.

template<typename... Args>
void send(actor_ptr whom, Args&&... what);

The variadic template pack what... is converted to a dynamically typed tuple (see Section 2.1)
and then enqueued to the mailbox of whom. The following example shows two equal sends, one
using send and the other using operator<<.

actor_ptr other = spawn(...);
send(other, 1, 2, 3);
other << make_any_tuple(1, 2, 3);

Using the function send is more compact, but does not have any other benefit. However, note
that you should not use send if you already have an instance of any_tuple, because it creates
a new tuple containing the old one.

actor_ptr other = spawn(...);
auto msg = make_any_tuple(1, 2, 3);
send(other, msg); // oops, creates a new tuple that contains msg
other << msg; // ok

The function send_tuple is equal to operator<<. Choosing one or the other is merely a matter
of personal preferences.
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5.1 Replying to Messages

During callback invokation, self->last_sender() is set. This identifies the sender of the
received message and is used implicitly by the functions reply and reply_tuple.

Using reply(...) is not equal to send(self->last_sender(), ...). The function send
always uses asynchronous message passing, whereas reply will send a synchronous response
message if the received message was a synchronous request (see Section 7).

To delay a response, i.e., reply to a message after receiving another message, actors can use
self->make_response_handle(). The functions reply_to and reply_tuple_to then
can be used to reply the the original request, as shown in the example below.

class broker : public event_based_actor {
// ...
on("foo", arg_match) >> [=](const std::string& request) {

auto hdl = make_response_handle();
sync_send(master, atom("bar"), request).then(

on_arg_match >> [=](const std::string& response) {
reply_to(hdl, response);

},
after...

);
}
// ...

};

In any case, do never reply than more than once. Additional (synchronous) response message
will be ignored by the receiver.

13



SENDING MESSAGES

5.2 Chaining Sends

Sending a message to a cooperatively scheduled actor usually causes the receiving actor to be
put into the scheduler’s job queue if it is currently blocked, i.e., is waiting for a new message.
This job queue is accessed by worker threads. The chaining optimization does not cause the
receiver to be put into the scheduler’s job queue if it is currently blocked. The receiver is stored as
successor of the currently running actor instead. Hence, the active worker thread does not need
to access the job queue, which significantly speeds up execution. However, this optimization can
be inefficient if an actor first sends a message and then starts computation.

void foo(actor_ptr other) {
send(other, ...);
very_long_computation();
// ...

}

int main() {
// ...
auto a = spawn(...);
auto b = spawn(foo, a);
// ...

}

The example above illustrates an inefficient work flow. The actor other is marked as successor
of the foo actor but its execution is delayed until very_long_computation() is done. In gen-
eral, actors should follow the work flow receive⇒compute⇒ send results. However, this
optimization can be disabled by calling self->chaining(false) if an actor does not match
this work flow.

void foo(actor_ptr other) {
self->chaining(false); // disable chaining optimization
send(other, ...); // not delayed by very_long_compuation
very_long_computation();
// ...

}

5.3 Delaying Messages

Messages can be delayed, e.g., to implement time-based polling strategies, by using one of the
functions delayed_send, delayed_send_tuple, delayed_reply, or delayed_reply_tuple.
The following example illustrates a polling strategy using delayed_send.

delayed_send(self, std::chrono::seconds(1), atom("poll"));
receive_loop (

on(atom("poll")) >> []() {
// poll a resource...
// schedule next polling
delayed_send(self, std::chrono::seconds(1), atom("poll"));

}
);

14
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5.4 Forwarding Messages

The function forward_to forwards the last dequeued message to an other actor. Forwarding
a synchronous message will also transfer responsibility for the request, i.e., the receiver of the
forwarded message can reply as usual and the original sender of the message will receive the
response. The following diagram illustrates forwarding of a synchronous message from actor B to
actor C.

A B C
| | |
| --(sync_send)--> | |
| | --(forward_to)-> |
| X |---\
| | | compute
| | | result
| |<--/
| <-------------(reply)-------------- |
| X
|---\
| | handle
| | response
|<--/
|
X

The forwarding is completely transparent to actor C, since it will see actor A as sender of the
message. However, actor A will see actor C as sender of the response message instead of actor
B and thus could recognize the forwarding by evaluating self->last_sender().

15
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6 Receiving Messages

Event-based actors differ in receiving messages from context-switching and thread-mapped ac-
tors: the former define their behavior as a message handler that is invoked whenever a new
messages arrives in the actor’s mailbox, whereas the latter use an explicit receive function. The
current behavior of an actor is its response to the next incoming message and includes (a) send-
ing messages to other actors, (b) creation of more actors, and (c) setting a new behavior.

6.1 Blocking API for Context-Switching and Thread-Mapped Actors

The function receive sequentially iterates over all elements in the mailbox beginning with the
first. It takes a partial function that is applied to the elements in the mailbox until an element
was matched by the partial function. An actor calling receive is blocked until it successfully
dequeued a message from its mailbox or an optional timeout occurs.

receive (
on<int>().when(_x1 > 0) >> // ...

);

The code snippet above illustrates the use of receive. Note that the partial function passed
to receive is a temporary object at runtime. Hence, using receive inside a loop would cause
creation of a new partial function on each iteration. libcppa provides three predefined receive
loops to provide a more efficient but yet convenient way of defining receive loops.
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//DON’T //DO

for (;;) {
receive (

// ...
);

}

receive_loop (
// ...

);

std::vector<int> results;
for (size_t i = 0; i < 10; ++i) {

receive (
on<int>() >> [&](int value) {

results.push_back(value);
}

);
}

std::vector<int> results;
size_t i = 0;
receive_for(i, 10) (

on<int>() >> [&](int value) {
results.push_back(value);

}
);

size_t received = 0;
do {

receive (
others() >> [&]() {

++received;
}

);
} while (received < 10);

size_t received = 0;
do_receive (

others() >> [&]() {
++received;

}
).until(gref(received) >= 10);

The examples above illustrate the correct usage of the three loops receive_loop, receive_for
and do_receive(...).until. It is possible to nest receives and receive loops.

receive_loop (
on<int>() >> [](int value1) {

receive (
on<float>() >> [&](float value2) {

cout << value1 << " => " << value2 << endl;
}

);
}

);
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6.2 Event-Based API

An event-based actor uses become to set its behavior. The given behavior is then executed
until it is replaced by another call to become or the actor finishes execution. A subtype of
event_based_actor must implement the pure virtual member function init. An implementa-
tion of init shall set an initial behavior by using become.

class printer : public event_based_actor {
void init() {

become (
others() >> []() {

cout << to_string(self->last_received()) << endl;
}

);
}

};

6.2.1 State-Based Actors

Another way to implement event-based actors is provided by the class sb_actor (“State-Based
Actor”). This base class calls become(init_state) in its init member function. Hence, a
subclass must only provide a member of type behavior named init_state.

struct printer : sb_actor<printer> {
behavior init_state = (

others() >> []() {
cout << to_string(self->last_received()) << endl;

}
);

};

Note that sb_actor uses the Curiously Recurring Template Pattern. Thus, the derived class must
be given as template parameter. This technique allows sb_actor to access the init_state

member of a derived class.

The following example illustrates a more advanced state-based actor that implements a stack with
a fixed maximum number of elements. Note that this example uses non-static member initialization
and thus might not compile with some compilers.
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class fixed_stack : public sb_actor<fixed_stack> {

// grant access to the private init_state member
friend class sb_actor<fixed_stack>;

static constexpr size_t max_size = 10;

std::vector<int> data;

behavior empty = (
on(atom("push"), arg_match) >> [=](int what) {

data.push_back(what);
become(filled);

},
on(atom("pop")) >> [=]() {

reply(atom("failure"));
}

);

behavior filled = (
on(atom("push"), arg_match) >> [=](int what) {

data.push_back(what);
if (data.size() == max_size)

become(full);
},
on(atom("pop")) >> [=]() {

reply(atom("ok"), data.back());
data.pop_back();
if (data.empty())

become(empty);
}

);

behavior full = (
on(atom("push"), arg_match) >> [=](int) { },
on(atom("pop")) >> [=]() {

reply(atom("ok"), data.back());
data.pop_back();
become(filled);

}
);

behavior& init_state = empty;

};
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6.2.2 Nesting Receives Using become/unbecome

Nesting receives in an event-based actor is slightly more difficult compared to context-switching or
thread-mapped actors, since become does not block. An actor has to set a new behavior calling
become with the keep_behavior policy to wait for the required message and then return to the
previous behavior by using unbecome, as shown in the example below.

// receives {int, float} sequences
struct testee : event_based_actor {

void init() {
become (

on<int>() >> [=](int value1) {
become (

// the keep_behavior policy stores the current behavior
// on the behavior stack to be able to return to this
// behavior later on by calling unbecome()
keep_behavior,
on<float>() >> [=](float value2) {

cout << value1 << " => " << value2 << endl;
// restore previous behavior
unbecome();

}
);

}
);

}
};

An event-based actor finishes execution with normal exit reason if the behavior stack is empty
after calling unbecome. The default policy of become is discard_behavior that causes an
actor to override its current behavior. The policy flag must be the first argument of become.

Note: the message handling in libcppa is consistent among all actor implementations, i.e.,
unmatched messages are never implicitly discarded if no suitable handler was found. Hence, the
order of arrival is not important in the example above. This is unlike other event-based implemen-
tations of the actor model such as Akka.
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6.2.3 Using a Factory to Define Event-Based Actors

The previously introduced ways to define event-based actors always required a class definition. A
factory provides an ad-hoc way to define event-based actors using lambda expressions or other
functors. The factory factory::event_based takes a functor that is used as implementation
for event_based_actor::init. Hence, the functor should call become to set an initial be-
havior. Note that you have to call self->become, since become is not available via the this

pointer.

Though event_based_actor::init has zero arguments, the functor can take any number
of pointer arguments. The factory then creates an actor with a member variable for each of
those arguments and calls the functor with pointers to the actor’s member variables. The member
variables can be initialized with user-defined values passed to the spawn member function of the
created factory, as shown in the following example.

auto f = factory::event_based([](std::string* name) {
self->become (

on(atom("get_name")) >> [name]() {
reply(atom("name"), *name);

}
);

});
auto a1 = f.spawn("alice");
auto a2 = f.spawn("bob");
auto a3 = f.spawn(); // a3 has an empty name
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6.3 Timeouts

During receive, an actor is blocked until it dequeues a message from its mailbox that matches
the given pattern. If no such message ever arrives, the actor is blocked forever. This might be
desirable if the actor only provides a service and should not do anything else. But often, we need
to be able to recover if an expected messages does not arrive within a certain time period. The
following examples illustrates the usage of after to define a timeout.

#include <chrono>
#include <iostream>

using std::cout;
using std::cerr;
using std::endl;

receive(
on_arg_match >> [](int i) { /* ... */ },
on_arg_match >> [](float i) { /* ... */ },
others() >> []() { /* ... */ },
after(std::chrono::seconds(10)) >> []() {

cerr << "received nothing within 10 seconds..." << endl;
// ...

}
);

receive(
after(std::chrono::milliseconds(50)) >> []() {

cerr << "slept for 50ms" << endl;
}

);

receive(
on_arg_match >> [](int i) {

cout << "found: " << i << endl;
},
after(std::chrono::seconds(0)) >> []() {

cout << "no integer found in mailbox" << endl;
}

);

Callbacks given as timeout handler must have zero arguments. Any number of patterns can
precede the timeout definition, but “after” must always be the final statement. Using a zero-
duration timeout causes receive to not block.

libcppa supports minutes, seconds, milliseconds and microseconds. However, note
that the precision depends on the operating system and your local work load. Thus, you should
not depend on a certain clock resolution.
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7 Synchronous Communication

libcppa uses a future-based API for synchronous communication. The functions sync_send
and sync_send_tuple send synchronous request messages to the receiver and return a future
to the response message. Note that the returned future is actor-local, i.e., only the actor that
has send the corresponding request message is able to receive the response identified by such a
future.

template<typename... Args>
message_future sync_send(actor_ptr whom, Args&&... what);

message_future sync_send_tuple(actor_ptr whom, any_tuple what);

A synchronous message is sent to the receiving actor’s mailbox like any other asynchronous
message. The response message, on the other hand, is treated separately.

Note: the runtime system will automatically reply with an empty message if the receiving actor did
not respond to a received synchronous response message by using the function reply.

7.1 Receive Response Messages

The functions receive_response and handle_response can be used to receive response
messages, as shown in the following example.

// an actor that replies with a string to atom("get")
auto testee = spawn<testee_impl>();

// "receive_response" usage example (blocking API)
auto future = sync_send(testee, atom("get"));
receive_response (future) (

on_arg_match >> [&](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [&]() {

// handle error
}

);

// "handle_response" usage example (event-based API)
auto future = sync_send(testee, atom("get"));
handle_response (future) (

on_arg_match >> [=](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [=]() {

// handle error
}

);
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The function receive_response is similar to receive, i.e., it blocks the calling actor until either
a response message was received or a timeout occured.

Similar to become, the function handle_response is part of the event-based API and is used
as “one-shot handler” to respond to a given future. The behavior passed to handle_response

is executed once and the actor automatically returns to its previous behavior afterwards. It is
possible to “stack” multiple handle_response calls. Each response handler is executed once
and then automatically discarded.

In both cases, the behavior definition of the response handler requires a timeout.

7.2 Using message_future’s Member Functions to Receive a Response

Often, an actor sends a synchronous message and then wants to wait for the response. In
this case, using either handle_response or receive_response is quite verbose. Therefore,
message_future provides the two member functions then and await. Using then is equal
to using handle_response, wheres await corresponds to receive_response, as illustrated
by the following example.

// an actor that replies with a string to atom("get")
auto testee = spawn<testee_impl>();

// receive response by using "await" (blocking API)
sync_send(testee, atom("get")).await(

on_arg_match >> [&](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [&]() {

// handle error
}

);

// set response handler by using "then" (event-based API)
sync_send(testee, atom("get")).then(

on_arg_match >> [=](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [=]() {

// handle error
}

);
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8 Management

libcppa adapts Erlang’s well-established fault propagation model. It allows to build actor sub-
system in which either all actors are alive or have collectively failed.

8.1 Links

Linked actors monitor each other. An actor sends an exit message to all of its links as part of its
termination. The default behavior for actors receiving such an exit message is to die for the same
reason, if the exit reason is non-normal. Actors can trap exit messages to handle them manually.

auto worker = spawn(...);
// receive exit messages as regular messages
self->trap_exit(true);
// monitor spawned actor
self->link_to(worker);
// wait until worker exited
receive (

on(atom("EXIT"), exit_reason::normal) >> []() {
// worker finished computation

},
on(atom("EXIT"), arg_match) >> [](std::uint32_t reason) {

// worker died unexpectedly
}

);

8.2 Monitors

A monitor observes the lifetime of an actor. Monitored actors send a down message to all monitors
as part of their termination. Unlike exit messages, down messages are always treated like any
other ordinary message.

auto worker = spawn(...);
// monitor spawned actor
self->monitor(worker);
// wait until worker exited
receive (

on(atom("DOWN"), exit_reason::normal) >> []() {
// worker finished computation

},
on(atom("DOWN"), arg_match) >> [](std::uint32_t reason) {

// worker died unexpectedly
}

);

Monitors are redundant. Hence, actors will receive one down message for each monitor.
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8.3 Error Codes

All error codes are defined in the namespace cppa::exit_reason.

normal 1 Actor finished execution without error
unhandled_exception 2 Actor was killed due to an unhandled exception

unallowed_function_call 3
Indicates that an event-based actor tried to use
blocking receive calls

remote_link_unreachable 257
Indicates that a remote actor became unreach-
able, e.g., due to connection error

user_defined 65536 Minimum value for user-defined exit codes

8.4 Attach Cleanup Code to an Actor

Actors can attach cleanup code to other actors. This code is executed immediately if the actor has
already exited. Keep in mind that self refers to the currently running actor. Thus, self refers to
the terminating actor and not to the actor that attached a functor to it.

auto worker = spawn(...);
actor_ptr observer = self;
// "monitor" spawned actor
worker->attach_functor([observer](std::uint32_t reason) {

// this callback is invoked from worker => self == worker
send(observer, atom("DONE"));

});
// wait until worker exited
receive (

on(atom("DONE")) >> []() {
// worker terminated

}
);

Note: It is possible to attach code to remote actors, but the cleanup code will run on the local
machine.
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9 Spawning Actors

Actors are created using the function spawn. The arguments passed to spawn depend on the
actor’s implementation.

9.1 Create Actors from Functors

The recommended way to implement both context-switching and thread-mapped actors is to use
functors, e.g., a free function or lambda expression. The arguments to the functor are passed
to spawn as additional arguments. The optional scheduling_hint template parameter of
spawn decides whether an actor should run in its own thread or use context-switching. The flag
detached causes spawn to create a thread-mapped actor, whereas scheduled, the default
flag, causes it to create a context-switching actor. The function spawn provides a quite similar
usage as std::thread, as shown in the examples below.

#include "cppa/cppa.hpp"

using namespace cppa;

void fun1();
void fun2(int arg1, std::string arg2);

int main() {
// spawn context-switching actors
auto a1 = spawn(fun1); // equal to spawn<scheduled>(fun1)
auto a2 = spawn(fun2, 42, "hello actor");
auto a3 = spawn<scheduled>(fun2, 42, "hello actor");
auto a4 = spawn([]() { /* ... */ }); // spawn a lambda expression
auto a5 = spawn([](int) { /* ... */ }, 42);
// spawn thread-mapped actors
auto a6 = spawn<detached>(fun1);
auto a7 = spawn<detached>([]() { /* ... */ });
auto a8 = spawn<detached>(fun2, 0, "zero");
// ...

}

Though it is possible to subtype context_switching_actor to implement a class-based ac-
tor using context-switching, it is not recommended. In general, context-switching and thread-
mapped actors are intended to ease migration of existing applications or to implement man-
aging actors on-the-fly using lambda expressions. Class-based actors should be a subtype of
event_based_actor, since this is the recommended actor implementation of libcppa.

Note: spawn(fun, arg0, ...) is not the same as spawn(std::bind(fun, arg0, ...))!
For example, a call to spawn(fun, self, ...) will pass a pointer to the calling actor to the
newly created actor, as expected, whereas spawn(std::bind(fun, self, ...)) wraps the
type of self into the function wrapper and evaluates self on function invocation. Thus, the actor
will end up having a pointer to itself rather than a pointer to the actor that created it.
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9.2 Create Class-Based Actors

Spawning class-based actors is straightforward and uses the function spawn as well. The tem-
plate parameter is the implementing class rather than a scheduling_hint, since class-based
actors are always scheduled. All arguments are forwarded to the constructor, as shown in the
following example.

#include "cppa/cppa.hpp"

using namespace cppa;

class my_actor1 : public event_based_actor { /* ... */ };

class my_actor2 : public sb_actor<my_actor2> {
/* ... */
public:
my_actor2(int value1, float value 2) {

// ...
}

};

int main() {
auto a1 = spawn<my_actor1>();
auto a2 = spawn<my_actor2>(1, 2.0f);
// ...

}

For spawning event-based actors without implementing an own class see Section 6.2.3. To spawn
actors as members of a group see Section 11.3.
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10 Network Transparency

All actor operations as well as sending messages are network transparent. Remote actors are
represented by actor proxies that forward all messages.

10.1 Publishing of Actors

void publish(actor_ptr whom, std::uint16_t port, const char* addr = 0)

The function publish binds an actor to a given port. It throws network_error if socket related
errors occur or bind_failure if the specified port is already in use. The optional addr param-
eter can be used to listen only to the given IP address. Otherwise, the actor accepts all incoming
connections (INADDR_ANY).

publish(self, 4242);
receive_loop (

on(atom("ping"), arg_match) >> [](int i) {
reply(atom("pong"), i);

}
);

10.2 Connecting to Remote Actors

actor_ptr remote_actor(const char* host, std::uint16_t port)

The function remote_actor connects to the actor at given host and port. A network_error is
thrown if the connection failed.

auto pong = remote_actor("localhost", 4242);
send(pong, atom("ping"), 0);
bool done = false;
do_receive (

on(atom("pong"), 10) >> [&]() {
done = true;

},
on<atom("pong"), int>() >> [](int i) {

reply(atom("ping"), i+1);
}

).until(gref(done));
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11 Group Communication

libcppa supports publish/subscribe-based group communication. Actors can join and leave
groups and send messages to groups.

std::string group_module = ...;
std::string group_id = ...;
auto grp = group::get(group_module, group_id);
self->join(grp);
send(grp, atom("test"));
self->leave(grp);

11.1 Anonymous Groups

Groups created on-the-fly with group::anonymous() can be used to coordinate a set of work-
ers. Each call to group::anonymous() returns a new group instance.

11.2 Local Groups

The "local" group module creates groups for in-process communication. For example, a group
for GUI related events could be identified by group::get("local", "GUI events"). The
group ID "GUI events" uniquely identifies a singleton group instance of the module "local".

11.3 Spawn Actors in Groups

The function spawn_in_group can be used to create actors as members of a group. The
function causes the newly created actors to call self->join(...) immediately and before
spawn_in_group returns. The usage of spawn_in_group is equal to spawn, except for an
additional group argument. The group handle is always the first argument, as shown in the exam-
ples below.

void fun1();
void fun2(int, float);
class my_actor1 : event_based_actor { /* ... */ };
class my_actor2 : event_based_actor {

// ...
my_actor2(const std::string& str) { /* ... */ }

};
// ...
auto grp = group::get(...);
auto a1 = spawn_in_group(grp, fun1);
auto a2 = spawn_in_group(grp, fun2, 1, 2.0f);
auto a3 = spawn_in_group<my_actor1>(grp);
auto a4 = spawn_in_group<my_actor2>(grp, "hello my_actor2!");
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12 Platform-Independent Type System

libcppa provides a fully network transparent communication between actors. Thus, libcppa
needs to serialize and deserialize messages. Unfortunately, this is not possible using the RTTI
system of C++. libcppa uses its own RTTI based on the class uniform_type_info, since it
is not possible to extend std::type_info.

Unlike std::type_info::name(), uniform_type_info::name() is guaranteed to return
the same name on all supported platforms. Furthermore, it allows to create an instance of a type
by name.

// creates a signed, 32 bit integer
cppa::object i = cppa::uniform_typeid<int>()->create();

However, you should rarely if ever need to use object or uniform_type_info.

12.1 User-Defined Data Types in Messages

All user-defined types must be explicitly “announced” so that libcppa can (de)serialize them
correctly, as shown in the example below.

#include "cppa/cppa.hpp"
using namespace cppa;

struct foo { int a; int b; };

int main() {
announce<foo>(&foo::a, &foo::b);
send(self, foo{1,2});
return 0;

}

Without the announce function call, the example program would terminate with an exception,
because libcppa rejects all types without available runtime type information.

announce() takes the class as template parameter and pointers to all members (or getter/setter
pairs) as arguments. This works for all primitive data types and STL compliant containers. See
the announce examples 1 – 4 of the standard distribution for more details.

Obviously, there are limitations. You have to implement serialize/deserialize by yourself if your
class does implement an unsupported data structure. See announce_example_5.cpp in the
examples folder.
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13 Common Pitfalls

13.1 Event-Based API

• The functions become and handle_response do not block, i.e., always return immedi-
ately. Thus, you should always capture by value in event-based actors, because all refer-
ences on the stack will cause undefined behavior if a lambda is executed.

13.2 Mixing Event-Based and Blocking API

• Blocking libcppa function such as receive will throw an exception if accessed from
an event-based actor. To catch as many errors as possible at compile-time, libcppa will
produce an error if receive is called and the this pointer is set and points to an event-
based actor.

• Context-switching and thread-mapped actors can use the become API, but they should use
it either exclusively or not at all. Whenever a non-event-based actor calls become() for the
first time, it will create a behavior stack and execute it until the behavior stack is empty. Thus,
the initial become blocks until the behavior stack is empty, whereas all subsequent calls to
become will return immediately. Related functions, e.g., sync_send(...).then(...),
behave the same, as they manipulate the behavior as well.

13.3 Synchronous Messages

• send(self->last_sender(), ...) is not equal to reply(...). The two functions
receive_response and handle_response will only recognize messages send via ei-
ther reply or reply_tuple.

• A future returned by sync_send represents exactly one response message. Therefore, it
is not possible to receive more than one response message. Calling reply more than once
will result in lost messages and calling handle_response or receive_response more
than once on a future will throw an exception.

• The future returned by sync_send is bound to the calling actor. It is not possible to transfer
such a future to another actor. Calling receive_response or handle_response for a
future bound to another actor is undefined behavior.

13.4 Sending Messages

• send(whom, ...) is syntactic sugar for whom << make_any_tuple(...). Hence, a
message sent via send(whom, self->last_dequeued()) will not yield the expected
result, since it wraps self->last_dequeued() into another any_tuple instance. The
correct way of forwarding messages is self->forward_to(whom).
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13.5 Sharing

• It is strongly recommended to not share states between actors. In particular, no actor shall
ever access member variables or member functions of another actor. Accessing shared
memory segments concurrently can cause undefined behavior that is incredibly hard to find
and debug. However, sharing data between actors is fine, as long as the data is immutable
and all actors access the data only via smart pointers such as std::shared_ptr. Never-
theless, the recommended way of sharing informations is message passing. Sending data
to multiple actors does not result in copying the data several times. Read Section 2 to learn
more about libcppa’s copy-on-write optimization for tuples.

13.6 Constructors of Class-based Actors

• During constructor invocation, self does not point to this. It points to the invoking actor
instead.

• You should not send or receive messages in a constructor.
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14 Appendix

14.1 Class option

Defined in header "cppa/option.hpp".

template<typename T>
class option;

Represents an optional value.

Member types
Member type Definition
type T

Member functions
option() Constructs an empty option
option(T value) Initializes this with value
option(const option&)
option(option&&)

Copy/move construction

option& operator=(const option&)
option& operator=(option&&)

Copy/move assignment

Observers

bool valid()
explicit operator bool()

Returns true if this has a value

bool empty()
bool operator!()

Returns true if this does not has a value

const T& get()
const T& operator*()

Access stored value

const T& get_or_else(const T& x) Returns get() if valid, x otherwise

Modifiers

T& get()
T& operator*()

Access stored value
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14.2 Using aout – A Thread-Safe Wrapper for cout

When using cout from multiple actors, output often appears interleaved. Moreover, using cout

from multiple actors – and thus multiple threads – in parallel should be avoided, since the standard
does not guarantee a thread-safe implementation.

By replacing std::cout with cppa::aout, actors can achieve a thread-safe text output. The
header cppa/cppa.hpp also defines overloads for std::endl and std::flush for aout,
but does not support the full range of ostream operations (yet). Each write operation to aout
sends a message to a ‘hidden’ actor (keep in mind, sending messages from actor constructors is
not safe). This actor only prints lines, unless output is forced using flush.

#include <chrono>
#include <cstdlib>
#include "cppa/cppa.hpp"

using namespace cppa;
using std::endl;

int main() {
std::srand(std::time(0));
for (int i = 1; i <= 50; ++i) {

spawn([i] {
aout << "Hi there! This is actor nr. " << i << "!" << endl;
std::chrono::milliseconds tout{std::rand() % 1000};
delayed_send(self, tout, atom("done"));
receive(others() >> [i] {

aout << "Actor nr. " << i << " says goodbye!" << endl;
});

});
}
// wait until all other actors we’ve spawned are done
await_all_others_done();
// done
shutdown();
return 0;

}
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