libcppa

A C++ library for actor programming

User Manual
libcppa version 0.8.1

Dominik Charousset

October 16, 2013

Contents

[1 First Steps|

[1.2 Supported Compllers|.

[1.3 Supported Operating Systems|

(1.4 HelloWorldExample|o

[2Copy-On-Write Tuples|

2.1 Dynamically Typed luples| oo

[2.2 Casting Tuples| . .

[3__Pattern Matching|

[3.5.2 Examples for Guard Expressions|.

[3.6 Projections and Extractors| Lo

4 _Actors]

[4.1 The “Keyword” self|.

[Sending Messages|

0.1 Replyingto Messages| o

5.2 ainingl

[5.3 Delaying Messages|

[0.4 Forwarding Messages|

|6 Receiving Messages|

10
10
11

12
13
14
14
15

16

{7 Synchronous Communication|

(/.1 Error Messages|

[7/.2 Recelve Response Messages|

[7.3 Synchronous Failures and Error Handlers|

[7.4 Using then to Recelve a Response|. . .

[7.4.1 Using Functors without Patterns|

[Management & Error Detection|

8.1 Linksl

8 Monitorsl

[9 Spawning Actors|

[10 Message Priorities|

{11 Network Transparency|

(11.1 Publishing of Actors|

[11.2 Connecting to Remote Actors|

(12 Group Communication|

[12.1 Anonymous Groups|

[12.2 Local Groups|

[12.3 Spawn Actors in Groups|

(13 Platform-Independent Type System|

[13.1 User-Defined Data Types in Messages|

[14 Blocking API

21
21
22
22
23
23
24

25
25
25
26
26

27

28

29
29
29

30
30
30
30

31
31

32

[14.1 Receiving Messages| Lo

[14.2 Recelving Synchronous Responses| L.

(15 Strongly Typed Actors|

[15.1 Spawning Typed Actors| L L

[15.2 Class-based Typed Actors|,

16 Common Pitfalls!
16.1 Event-B API . . .

[16.2 Mixing Event-Based and Blocking API|

[16.3 Synchronous Messages| L

[16.4 Sending Messages|

(7.1 Classoption| 0 . e e e

[17.2 Using aout — A Concurrency-safe Wrapper for cout|

35
35
36

37
37
37
37
37
38
38

FIRST STEPS

1 First Steps

To compile libcppa, you will need CMake and a C++11 compiler. To get and compile the sources,
open a terminal (on Linux or Mac OS X) and type:

git clone git://github.com/Neverlord/libcppa.git
cd libcppa

./configure

make

make install [as root, optional]

It is recommended to run the unit tests as well:
make test

Please submit a bug report that includes (a) your compiler version, (b) your OS, and (c) the content
of the fle build/Testing/Temporary/LastTest . log if an error occurs.

1.1 Features Overview

Lightweight, fast and efficient actor implementations

Network transparent messaging

Error handling based on Erlang’s failure model

Pattern matching for messages as internal DSL to ease development

Thread-mapped actors and on-the-fly conversions for soft migration of existing applications
Publish/subscribe group communication

1.2 Supported Compilers

e GCC>47
e Clang > 3.2

1.3 Supported Operating Systems

e Linux

e Mac OS X

e Note for MS Windows: libcppa relies on C++11 features such as variadic templates. We
will support this platform as soon as Microsoft’s compiler implements all required C++11
features.

FIRST STEPS

1.4 Hello World Example

#include <string>
#include <iostream>
#include "cppa/cppa.hpp"

using namespace std;
using namespace cppa;

void mirror () {
// walit for messages
become (
// invoke this lambda expression if we receive a string
on_arg_match >> [] (const string& what) -> string {
// prints "Hello World!" via aout (thread-safe cout wrapper)

aout << what << endl;
// terminates this actor afterwards;
// 'become’ otherwise loops forever
self->quit () ;
// replies "!dlroW olleH"
return string(what.rbegin (), what.rend());
}
)i

void hello_world(const actor_ptré& buddy) {
// send "Hello World!" to our buddy
sync_send (buddy, "Hello World!") .then/(
// ... and wait for a response
on_arg_match >> [] (const string& what) {
// prints "!dlroW olleH"
aout << what << endl;
}
)i

int main () {
// create a new actor that calls 'mirror ()’
auto mirror_actor = spawn(mirror);
// create another actor that calls "hello_world (mirror_actor)’
spawn (hello_world, mirror_actor);
// wait until all other actors we have spawned are done
await_all_others_done () ;
// run cleanup code before exiting main
shutdown () ;

COPY-ON-WRITE TUPLES

2 Copy-On-Write Tuples

The message passing implementation of libcopa uses tuples with call-by-value semantic. Hence,
it is not necessary to declare message types, though, libcppa allows users to use user-defined
types in messages (see Section [13.7). A call-by-value semantic would cause multiple copies of
a tuple if it is send to multiple actors. To avoid unnecessary copying overhead, libcopa uses a
copy-on-write tuple implementation. A tuple is implicitly shared between any number of actors, as
long as all actors demand only read access. Whenever an actor demands write access, it has to
copy the data first if more than one reference to it exists. Thus, race conditions cannot occur and
each tuple is copied only if necessary.

The interface of cow_tuple strictly distinguishes between const and non-const access. The
template function get returns an element as immutable value, while get_ref explicitly returns a
mutable reference to the required value and detaches the tuple if needed. We do not provide a
const overload for get, because this would cause to unintended, and thus unnecessary, copying
overhead.

auto x1 = make_cow_tuple(l, 2, 3); // cow_tuple<int, int, int>
auto x2 = x1; // cow_tuple<int, int, int>
assert (&get<0> (x1) == &get<0>(x2)); // point to the same data
get_ref<0>(x1l) = 10; // detaches x1 from x2
//get<0>(x1) = 10; // compiler error

assert (get<0>(x1) == 10); // x1 is now {10, 2, 3}
assert (get<0>(x2) == 1); // x2 1is still {1, 2, 3}
assert (&get<0>(x1) != &get<0>(x2)); // no longer the same

2.1 Dynamically Typed Tuples

The class any_tuple represents a tuple without static type information. All messages send
between actors use this tuple type. The type information can be either explicitly accessed for
each element or the original tuple, or a subtuple of it, can be restored using tuple_cast. Users
of libcppa usually do not need to know about any_tuple, since it is used “behind the scenes”.
However, any_tuple can be created from a cow_tuple or by using make_any_tuple, as
shown below.

auto x1 = make_cow_tuple(l, 2, 3); // cow_tuple<int, int, int>
any_tuple x2 = x1; // any_tuple
any_tuple x3 = make_cow_tuple (10, 20); // any_tuple
auto x4 = make_any_tuple (42); // any_tuple

COPY-ON-WRITE TUPLES

2.2 Casting Tuples

The function tuple_cast restores static type information from an any_tuple object. It returns
an option (see Section[17.1) for a cow_tuple of the requested types.

auto x1 = make_any_tuple(l, 2, 3);

auto x2_opt = tuple_cast<int, int, int>(x1);
assert (x2_opt.valid());

auto x2 = *x2_opt;

assert (get<0> (x2) == 1);

assert (get<l> (x2) == 2);

assert (get<2> (x2) == 3);

The function tuple_cast can be used with wildcards (see Section to create a view to a
subset of the original data. No elements are copied, unless the tuple becomes detached.

auto x1 = make_cow_tuple(l, 2, 3);

any_tuple x2 = x1;

auto x3_opt = tuple_cast<int, anything, int>(x2);
assert (x3_opt.valid());

auto x3 = *xx3_opt;

assert (get<0> (x3) == 1);

assert (get<l> (x3) == 3);

assert (&get<0> (x3) == &get<0>(x1));

assert (&get<l> (x3) == &get<2>(x1));

PATTERN MATCHING

3 Pattern Matching

C++ does not provide pattern matching facilities. A general pattern matching solution for arbitrary
data structures would require a language extension. Hence, we decided to restrict our implemen-
tation to tuples, to be able to use an internal domain-specific language approach.

3.1 Basics

A match expression begins with a call to the function on, which returns an intermediate object
providing the member function when and operator>>. The right-hand side of the operator
denotes a callback, usually a lambda expression, that should be invoked if a tuple matches the
types given to on, as shown in the example below.

on<int> () >> [](int 1) { /*...x/ }
on<int, float>() >> [](int 1, float £) { /x...x/ }
on<int, int, int>() >> [](int a, int b, int c) { /*...x/ }

The result of operator>> is a match statement. A partial function can consist of any number of
match statements. At most one callback is invoked, since the evaluation stops at the first match.

partial_function fun {

on<int>() >> [](int i) {
// casel

by

on<int> () >> [](int 1) {

// case2; never invoked, since casel always matches first
}
bi

The function “on” can be used in two ways. Either with template parameters only or with function
parameters only. The latter version deduces all types from its arguments and matches for both
type and value. To match for any value of a given type, “val” can be used, as shown in the
following example.

on(42) >> [](int i) { assert (i == 42),; }

on("hello world") >> [] { /* ... %/ }

on("print", wval<std::string>) >> [] (const std::string& what) {
//

}

Note: The given callback can have less arguments than the pattern. But it is only allowed to skip
arguments from left to right.

on<int, float, double>() >> [] (double) { /x...x/ } // ok
on<int, float, double>() >> [] (float, double) { /*...x/ } // ok
on<int, float, double>() >> [] (int, float, double) { /*...%x/ } // ok
on<int, float, double>() >> [](int 1) { /*...x/ } // compiler error

PATTERN MATCHING

3.2 Reducing Redundancy with “arg match” and “on_arg match”

Our previous examples always used the most verbose form, which is quite redundant, since you
have to type the types twice — as template parameter and as argument type for the lambda. To
avoid such redundancy, arg_match can be used as last argument to the function on. This causes
the compiler to deduce all further types from the signature of the given callback.

on<int, int>() >> [](int a, int b) { /x...%/ }
// 1s equal to:
on(arg_match) >> [] (int a, int b) { /x...%/ }

Note that the second version does call on without template parameters. Furthermore, arg_match
must be passed as last parameter. If all types should be deduced from the callback signature,
on_arg_match can be used. Itis equal to on (arg_match).

on_arg_match >> [] (const std::string& str) { /*...*/ }

3.3 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments, performs
a predefined operation and returns the result. It cannot determine an operation, such as multiply
or add, by receiving two operands. Thus, the operation must be encoded into the message. The
Erlang programming language introduced an approach to use non-numerical constants, so-called
atoms, which have an unambiguous, special-purpose type and do not have the runtime overhead
of string constants. Atoms are mapped to integer values at compile time in libcopa. This map-
ping is guaranteed to be collision-free and invertible, but limits atom literals to ten characters and
prohibits special characters. Legal characters are “_0-92A-za-z" and the whitespace character.
Atoms are created using the constexpr function atom, as the following example illustrates.

on (atom("add"), arg_match) >> [](int a, int b) { /*...x/ },
on(atom ("multiply"), arg_match) >> [](int a, int b) { /*...x/ },
//

Note: The compiler cannot enforce the restrictions at compile time, except for a length check. The
assertion atom ("!?") != atom("?!") is not true, because each invalid character is mapped
to the whitespace character.

PATTERN MATCHING

3.4 VWildcards

The type anything can be used as wildcard to match any number of any types. A pattern created
by on<anything> () or its alias others () is useful to define a default case. For patterns
defined without template parameters, the constexpr value any_vals can be used as function
argument. The constant any_vals is of type anything and is nothing but syntactic sugar for
defining patterns.

on<int, anything>() >> [] (int i) {
// tuple with int as first element
bo

on (any_vals, arg_match) >> [] (int 1) |
// tuple with int as last element
// "on(any_vals, arg_match)" is equal to "on(anything{}, arg_match)"
} 14
others () >> [] {
// everything else (default handler)
// "others ()" is equal to "on<anything> ()" and "on (any_vals)"
}
3.5 Guards

Guards can be used to constrain a given match statement by using placeholders, as the following
example illustrates.

using namespace cppa::placeholders; // contains _x1 - _x9
on<int> () .when(_x1 % 2 == 0) >> [] {

// int 1is even

|
on<int> () >> [] {
// int is odd

Guard expressions are a lazy evaluation technique. The placeholder _x1 is substituted with the
first value of a given tuple. All binary comparison and arithmetic operators are supported, as well
as && and | |. In addition, there are three functions designed to be used in guard expressions:
gref (“guard reference”), gval (“guard value”), and gcall (“guard function call”). The function
gref creates a reference wrapper, while gval encloses a value. It is similar to std: : ref but it
is always const and “lazy”. A few examples to illustrate some pitfalls:

int val = 42;

on<int> () .when (_x1 == val) // (1) matches if _x1 == 42
on<int> () .when (_x1 == gref (val)) // (2) matches 1f _x1 == wval
on<int> () .when (_x1 == std::ref(val)) // (3) ok, because of placeholder
others () .when (gref (val) == 42) // (4) matches everything

// as long as val == 42
others () .when (std: :ref (val) == 42) // (5) compiler error

PATTERN MATCHING

Statement (5) is evaluated immediately and returns a boolean, whereas statement (4) creates
a valid guard expression. Thus, you should always use gref instead of std: : ref to avoid errors.

The second function, gcall, encapsulates a function call. Its usage is similarto std: :bind, but
there is also a short version for unary functions: gcall (fun, _x1) isequalto_x1 (fun).

auto vec_sorted = [] (const std::vector<int>& vec) {
return std::is_sorted(vec.begin(), vec.end());
bi
on<std::vector<int>>() .when (gcall (vec_sorted, _x1)) // is equal to:

on<std::vector<int>> () .when (_x1 (vec_sorted)))

3.5.1 Placeholder Interface

template<int X>
struct guard_placeholder;

Member functions (x represents the value at runtime, y represents an iterable container)

size () Returns x.size ()

empty () Returns x.empty ()

not_empty () Returns !x.empty ()

front () Returns an option (see Section[17.1) to x. front ()
in(y) Returns true if y contains x, false otherwise
not_in (y) Returns !in (y)

3.5.2 Examples for Guard Expressions

using namespace std;
typedef vector<int> ivec;

vector<string> strings{"abc", "def"};

on_arg _match.when(_x1.front () == 0) >> [] (const ivecé& v) {
// note: we don’t have to check whether _x1 is empty in our guard,
// because ’_x1.front ()’ returns an option for a
// reference to the first element
assert (v.size() >= 1);
assert (v.front () == 0);
b
on<int> () .when(_x1.in ({10, 20, 30})) >> [](int 1) {
assert (i == 10 || 41 == 20 || 1 == 30);
bo
on<string> () .when(_x1l.not_in(strings)) >> [] (const stringé& str) {
assert (str != "abc" && str != "def");
by
on<string> () .when(_xl.size() == 10) >> [] (const string& str) {
//

PATTERN MATCHING

3.6 Projections and Extractors

Projections perform type conversions or extract data from a given input. If a callback expects an
integer but the received message contains a string, a projection can be used to perform a type
conversion on-the-fly. This conversion should be free of side-effects and, in particular, shall not
throw exceptions, because a failed projection is not an error. A pattern simply does not match if a
projection failed. Let us have a look at a simple example.

auto intproj = [] (const stringé& str) -> option<int> {
charx endptr = nullptr;
int result = static_cast<int>(strtol (str.c_str(), &endptr, 10));
if (endptr != nullptr && *endptr == ’"\0’) return result;

return {};
bi
partial_function fun {
on(intproj) >> [](int i) {
// case 1: successfully converted a string
bo
on_arg_match >> [] (const string& str) {
// case 2: str is not an integer
}
bi

The lambda intprojis a string = int projection, but note that it does not return an integer.
It returns option<int>, because the projection is not guaranteed to always succeed. An empty
option indicates, that a value does not have a valid mapping to an integer. A pattern does not
match if a projection failed.

Note: Functors used as projection must take exactly one argument and must return a value.
The types for the pattern are deduced from the functor’s signature. If the functor returns an
option<T>, then T is deduced.

ACTORS

4 Actors

libcppa provides several actor implementations, each covering a particular use case. The class
local_actor is the base class for all implementations, except for (remote) proxy actors. Hence,
local_actor provides a common interface for actor operations like trapping exit messages or
finishing execution. The default actor implementation in libcppa is event-based. Event-based
actors have a very small memory footprint and are thus very lightweight and scalable. Context-
switching actors are used for actors that make use of the blocking API (see Section [14), but do
not need to run in a separate thread. Context-switching and event-based actors are scheduled
cooperatively in a thread pool. Thread-mapped actors can be used to opt-out of this cooperative
scheduling.

4.1 The “Keyword” self

The self pointer is an essential ingredient of our design. It identifies the running actor similar
to the implicit this pointer identifying an object within a member function. Unlike this, though,
self is not limited to a particular scope. The self pointer is used implicitly, whenever an actor
calls functions like send or become, but can be accessed to use more advanced actor operations
such as linking to another actor, e.g., by calling sel1f->1ink_to (other). The self pointeris
convertible to actor_ptr and local_actorx, but it is neither copyable nor assignable. Thus,
auto s = self will cause a compiler error, while actor_ptr s = self works as expected.

A thread that accesses self is converted on-the-fly to an actor if needed. Hence, “everything is
an actor” in libcppa. However, automatically converted actors use an implementation based on the
blocking API, which behaves slightly different than the default, i.e., event-based, implementation.

10

ACTORS

4.2 Interface
class local_actor;

Member functions

quit (uint32_t reason = normal)

Finishes execution of this actor

Observers

bool trap_exit ()

Checks whether this actor traps exit messages

bool chaining()

Checks whether this actor uses the “chained send
optimization (see Section

any_tuple last_dequeued()

Returns the last message that was dequeued from
the actor’'s mailbox
Note: Only set during callback invocation

actor_ptr last_sender ()

Returns the sender of the last dequeued message
Note;: Only set during callback invocation
Note,: Used implicitly to send response messages

(see Section

vector<group_ptr> joined_groups ()

Returns all subscribed groups

Modifiers

void trap_exit (bool enabled)

Enables or disables trapping of exit messages

void chaining(bool enabled)

Enables or disables chained send

void join(const group_ptré& g)

Subscribes to group g

void leave (const group_ptr& g)

Unsubscribes group g

auto make_response_handle ()

Creates a handle that can be used to respond to the
last received message later on, e.g., after receiving
another message

void on_sync_failure (auto fun)

Sets a handler, i.e., a functor taking no argu-
ments, for unexpected synchronous response mes-
sages (default action is to kill the actor for reason
unhandled_sync_failure)

void on_sync_timeout (auto fun)

Sets a handler, i.e.,, a functor taking no ar-
guments, for timed_sync_send timeout mes-
sages (default action is to kill the actor for reason
unhandled_sync_timeout)

void monitor (actor_ptr whom)

Adds a unidirectional monitor to whom (see Section

B9)

void demonitor (actor_ptr whom)

Removes a monitor from whom

volid exec_behavior_stack ()

Executes an actor’s behavior stack until it is empty

bool has_sync_failure_handler ()

Checks wheter this actor has a user-defined sync fail-
ure handler

11

SENDING MESSAGES

5 Sending Messages

Messages can be sent by using send, send_tuple, Of operator<<. The variadic template
function send has the following signature.

template<typename... Args>
void send(actor_ptr whom, Argsé&&... what);

The variadic template pack what . . . is converted to a dynamically typed tuple (see Section
and then enqueued to the mailbox of whom. The following example shows two equal sends, one
using send and the other using operator<<.

actor_ptr other = spawn(...);
send (other, 1, 2, 3);
other << make_any_tuple(l, 2, 3);

Using the function send is more compact, but does not have any other benefit. However, note
that you should not use send if you already have an instance of any_tuple, because it creates
a new tuple containing the old one.

actor_ptr other = spawn(...);

auto msg = make_any_tuple(l, 2, 3);

send (other, msg); // oops, creates a new tuple that contains msg
send_tuple (other, msqg); // ok

other << msg; // ok

The function send_tuple is equal to operator<<. Choosing one or the other is merely a matter
of personal preferences.

12

SENDING MESSAGES

5.1 Replying to Messages

The return value of a message handler is used as response message. During callback invokation,
self->last_sender () is set. This identifies the sender of the received message and is used
implicitly to reply to the correct sender. However, using send (self->last_sender (), ...)
does not reply to the message, i.e., synchronous messages will not recognize the message as
response.

void client (const actor_ptr& master) {

become (
on("foo", arg_match) >> [=] (const string& request) -> string {
return sync_send(master, atom("bar"), request).then/
on_arg_match >> [=] (const std::stringé& response) {

return response;

13

SENDING MESSAGES

5.2 Chaining

Sending a message to a cooperatively scheduled actor usually causes the receiving actor to be
put into the scheduler’s job queue if it is currently blocked, i.e., is waiting for a new message.
This job queue is accessed by worker threads. The chaining optimization does not cause the
receiver to be put into the scheduler’s job queue if it is currently blocked. The receiver is stored as
successor of the currently running actor instead. Hence, the active worker thread does not need
to access the job queue, which significantly speeds up execution. However, this optimization can
be inefficient if an actor first sends a message and then starts computation.

void foo(actor_ptr other) {

send (other, ...);
very_long_computation () ;
//

}

int main () {
//
auto a = spawn(...);
auto b = spawn(foo, a);
//

The example above illustrates an inefficient work flow. The actor other is marked as successor
of the foo actor but its execution is delayed until very_long_computation () is done. In gen-
eral, actors should follow the work flow receive =compute = send results. However, this
optimization can be disabled by calling self->chaining (false) if an actor does not match
this work flow.

void foo(actor_ptr other) {
self->chaining(false); // disable chaining optimization
send (other, ...); // not delayed by very_long_compuation
very_long_computation();

//

5.3 Delaying Messages

Messages can be delayed, e.g., to implement time-based polling strategies, by using one of
delayed_send, delayed_send_tuple, delayed_reply, Of delayed_reply_tuple. The
following example illustrates a polling strategy using delayed_send.

delayed_send(self, std::chrono::seconds(l), atom("poll"));
become (
on(atom("poll")) >> []1() {

// poll a resource...
// schedule next polling
delayed_send(self, std::chrono::seconds(l), atom("poll"));

14

SENDING MESSAGES

5.4 Forwarding Messages

The function forward_to forwards the last dequeued message to an other actor. Forwarding
a synchronous message will also transfer responsibility for the request, i.e., the receiver of the
forwarded message can reply as usual and the original sender of the message will receive the
response. The following diagram illustrates forwarding of a synchronous message from actor B to
actor C.

A B C

| | |

| ——(sync_send)-—-> |

| | ——(forward_to)—-> |

| X [———\

| | | compute
| | | result
| | <==/

I (reply) ———===———————~ |

| X

===\

| | handle

| | response

| <=—/

|

X

The forwarding is completely transparent to actor C, since it will see actor A as sender of the
message. However, actor A will see actor C as sender of the response message instead of actor
B and thus could recognize the forwarding by evaluating self->1ast_sender ().

15

RECEIVING MESSAGES

6 Receiving Messages

The current behavior of an actor is its response to the next incoming message and includes (a)
sending messages to other actors, (b) creation of more actors, and (c) setting a new behavior.

An event-based actor, i.e., the default implementation in libcppa, uses become to set its behavior.
The given behavior is then executed until it is replaced by another call to become or the actor
finishes execution.

6.1 Class-based actors

A class-based actor is a subtype of event_based_actor and must implement the pure virtual
member function init. Animplementation of init shall set an initial behavior by using become.

class printer : public event_based_actor {
void init () {
become (
others () >> [] {
cout << to_string(self->last_received()) << endl;

Another way to implement class-based actors is provided by the class sb_actor (“State-Based
Actor”). This base class calls become (init_state) inits init member function. Hence, a
subclass must only provide a member of type behavior named init_state.

struct printer : sb_actor<printer> ({
behavior init_state = (
others () >> [] {
cout << to_string(self->last_received()) << endl;

}
) ;
}i

Note that sb_actor uses the Curiously Recurring Template Pattern. Thus, the derived class must
be given as template parameter. This technique allows sb_actor to access the init_state
member of a derived class. The following example illustrates a more advanced state-based actor
that implements a stack with a fixed maximum number of elements.

16

RECEIVING MESSAGES

class fixed_stack : public sb_actor<fixed_stack> {
friend class sb_actor<fixed_stack>;
size_t max_size = 10;
vector<int> data;
behavior full;

behavior filled;
behavior empty;

behavior& init_state = empty;
public:
fixed_stack(size_t max) : max_size (max) {
full = (
on(atom("push"), arg_match) >> [=] (int) { /x discard =*/ },
on(atom("pop")) >> [=]() —-> cow_tuple<atom value, int> {
auto result = data.back();

data.pop_back () ;
become (filled) ;
return {atom("ok"), result};

);

filled = (
on(atom("push"), arg_match) >> [=] (int what) {
data.push_back (what) ;
if (data.size() == max_size) become (full);
}I
on (atom ("pop")) >> [=]() —-> cow_tuple<atom_value, int> {
auto result = data.back();
data.pop_back () ;
if (data.empty()) become (empty);
return {atom("ok"), result};
}
)
empty = (
on(atom("push"), arg_match) >> [=] (int what) {
data.push_back (what) ;
become (filled) ;
bo
on(atom("pop")) >> [=] {

return atom("failure");

}i

17

RECEIVING MESSAGES

6.2 Nesting Receives Using become/unbecome

Since become does not block, an actor has to manipulate its behavior stack to achieve nested
receive operations. An actor can set a new behavior by calling become with the keep_behavior
policy to be able to return to its previous behavior later on by calling unbecome, as shown in the
example below.

// receives {int, float} sequences

void testee () {
become (
on_arg_match >> [=] (int valuel) {
become (

// the keep_behavior policy stores the current behavior
// on the behavior stack to be able to return to this
// behavior later on by calling unbecome ()
keep_behavior,
on_arg_match >> [=] (float value2) {

cout << valuel << " => " << value2 << endl;

// restore previous behavior

unbecome () ;

An event-based actor finishes execution with normal exit reason if the behavior stack is empty
after calling unbecome. The default policy of become is discard_behavior that causes an
actor to override its current behavior. The policy flag must be the first argument of become.

Note: the message handling in libcppa is consistent among all actor implementations: unmatched
messages are never implicitly discarded if no suitable handler was found. Hence, the order of
arrival is not important in the example above. This is unlike other event-based implementations of
the actor model such as Akka for instance.

18

RECEIVING MESSAGES

6.3 Timeouts

A behavior set by become is invoked whenever a new messages arrives. If no message ever
arrives, the actor would wait forever. This might be desirable if the actor only provides a service
and should not do anything else. But often, we need to be able to recover if an expected messages
does not arrive within a certain time period. The following examples illustrates the usage of after
to define a timeout.

#include <chrono>
#include <iostream>
#include "cppa/cppa.hpp"

using std::endl;

void eager_actor () {
become (

on_arg_match >> [](int 1) { /* ... =/},

on_arg_match >> [] (float 1) { /* ... %/ },

others() >> [] { /* ... %/},

after (std::chrono::seconds (10)) >> []1() {
aout << "received nothing within 10 seconds..." << endl;
//

Callbacks given as timeout handler must have zero arguments. Any number of patterns can pre-
cede the timeout definition, but “a fter” must always be the final statement. Using a zero-duration
timeout causes the actor to scan its mailbox once and then invoke the timeout immediately if no
matching message was found.

libcppa supports timeouts using minutes, seconds, milliseconds and microseconds.
However, note that the precision depends on the operating system and your local work load.
Thus, you should not depend on a certain clock resolution.

19

RECEIVING MESSAGES

6.4 Skipping Messages

Unmatched messages are skipped automatically by libcopa’s runtime system. This is true for all
actor implementations. To allow actors to skip messages manually, skip_message can be used.
This is in particular useful whenever an actor switches between behaviors, but wants to use a
default rule created by others () to filter messages that are not handled by any of its behaviors.

The following example illustrates a simple server actor that dispatches requests to workers. Af-
ter receiving an ' idle’ message, it awaits a request that is then forwarded to the idle worker.
Afterwards, the server returns to its initial behavior, i.e., awaits the next * idle’ message. The
server actor will exit for reason user_defined whenever it receives a message that is neither a
request, nor an idle message.

void server () {

auto die = [=] { self->quit (exit_reason::user_defined); };

become (
on (atom ("idle"™)) >> [=] {
auto worker = last_sender();
become (
keep_behavior,
on(atom("request")) >> [=] {
// forward request to idle worker
forward_to (worker);
// await next idle message
unbecome () ;
}I
on(atom("idle")) >> skip_message,
others () >> die
) ;
by
on (atom("request")) >> skip_message,
others () >> die

)i

20

SYNCHRONOUS COMMUNICATION

7 Synchronous Communication

libcppa uses a future-based API for synchronous communication. The functions sync_send and
sync_send_tuple send synchronous request messages to the receiver and return a future to
the response message. Note that the returned future is actor-local, i.e., only the actor that has
send the corresponding request message is able to receive the response identified by such a
future.

template<typename... Args>
message_future sync_send(actor_ptr whom, Args&é&... what);

message_future sync_send_tuple(actor_ptr whom, any_tuple what);

template<typename Duration, typename... Args>

message_future timed_sync_send(actor_ptr whom,
Duration timeout,
Argsé&é& ... what);

template<typename Duration, typename... Args>

message_future timed_sync_send_tuple (actor_ptr whom,
Duration timeout,
any_tuple what);

A synchronous message is sent to the receiving actor’s mailbox like any other asynchronous
message. The response message, on the other hand, is treated separately.

The difference between sync_send and timed_sync_send is how timeouts are handled. The
behavior of sync_send is analogous to send, i.e., timeouts are specified by using after (.. .)
statements (see [6.3). When using timed_sync_send function, aftter (...) statements are
ignored and the actor will receive a ' TIMEOUT’ message after the given duration instead.

7.1 Error Messages

When using synchronous messaging, libcppa’s runtime environment will send ...

e {/EXITED’, uint32_t exit_reason} if the receiver is not alive
e {’VvOID’ } if the receiver handled the message but did not respond to it

e {/TIMEOUT’ } if a message send by timed_sync_send timed out

21

SYNCHRONOUS COMMUNICATION

7.2 Receive Response Messages

The function handle_response can be used to set a one-shot handler receiving the response
message send by sync_send.

actor_ptr testee = ...; // replies with a string to ’get’

// "handle_response" usage example

auto handle = sync_send(testee, atom("get"));
handle_response (handle) (
on_arg_match >> [=] (const std::stringé& str) {

// handle str
by
after (std::chrono::seconds (30)) >> [=]1() {
// handle error
}
)i

Similar to become, the function handle_response modifies an actor’s behavior stack. However,
it is used as “one-shot handler” and automatically returns the previous actor behavior afterwards.
It is possible to “stack” multiple handle_response calls. Each response handler is executed
once and then automatically discarded.

7.3 Synchronous Failures and Error Handlers

An unexpected response message, i.e., a message that is not handled by given behavior, will
invoke the actor's on_sync_failure handler. The default handler kills the actor by calling
self->quit (exit_reason::unhandled_sync_failure). The handler can be overridden
by calling self->on_sync_failure (/*...*/).

Unhandled ' TIMEOUT’ messages trigger the on_sync_timeout handler. The default handler
kills the actor for reason exit_reason: :unhandled_sync_failure. It is possible set both
error handlers by calling self->on_sync_timeout_or_failure (/*...x).

22

SYNCHRONOUS COMMUNICATION

7.4 Using then to Receive a Response

Often, an actor sends a synchronous message and then wants to wait for the response. In this
case, using either handle_response is quite verbose. To allow for a more compact code,
message_future provides the member function then. Using this member function is equal
to using handle_response, as illustrated by the following example.

actor_ptr testee = ...; // replies with a string to ’'get’

// set handler for unexpected messages
self->on_sync_failure = [] {
aout << "received: " << to_string(self->last_dequeued()) << endl;

}i

// set handler for timeouts
self->on_sync_timeout = [] {

aout << "timeout occured" << endl;
}i

// set response handler by using "then"

timed_sync_send(testee, std::chrono::seconds(30), atom("get")) .then(
on_arg_match >> [=] (const std::string& str) { /+ handle str =*/ }

)i

7.4.1 Using Functors without Patterns

To reduce verbosity, libcopa supports synchronous response handlers without patterns. In this
case, the pattern is automatically deduced by the functor’s signature.

actor_ptr testee = ...; // replies with a string to ’'get’

// (1) functor only usage
sync_send (testee, atom("get")) .then(
[=] (const std::string& str) { /x...x/ }
)i
// statement (1) is equal to:
sync_send (testee, atom("get")) .then(
on(any_vals, arg_match) >> [=] (const std::string& str) { /*...%/ }

)i

23

SYNCHRONOUS COMMUNICATION

7.4.2 Continuations for Event-based Actors

libcppa supports continuations to enable chaining of send/receive statements. The functions
handle_response andmessage_future: : then both return a helper object offering the mem-
ber function cont inue_with, which takes a functor f without arguments. After receiving a mes-
sage, f is invoked if and only if the received messages was handled successfully, i.e., neither
sync_failure nor sync_timeout occurred

actor_ptr d_or_s = ...; // replies with either a double or a string
sync_send(d_or_s, atom("get")) .then(
[=] (double wvalue) { /+ functor f1 */ },

[=] (const stringé& value) { /* functor f2«/ }

) .continue_with ([=] {
// this continuation is invoked in both cases
// xafter*x fl or f2 is done, but xnotx in case
// of sync_failure or sync_timeout

)i

24

MANAGEMENT & ERROR DETECTION

8 Management & Error Detection

libcppa adapts Erlang’s well-established fault propagation model. It allows to build actor subsys-
tem in which either all actors are alive or have collectively failed.

8.1 Links

Linked actors monitor each other. An actor sends an exit message to all of its links as part of its
termination. The default behavior for actors receiving such an exit message is to die for the same
reason, if the exit reason is non-normal. Actors can trap exit messages to handle them manually.

actor_ptr worker = ...;
// receive exit messages as regular messages
self->trap_exit (true);
// monitor spawned actor
self->1link_to (worker);
// wait until worker exited
become (
on (atom ("EXIT"), exit_reason::normal) >> [] {
// worker finished computation
bo
on(atom ("EXIT"), arg_match) >> [] (std::uint32_t reason) {
// worker died unexpectedly

8.2 Monitors

A monitor observes the lifetime of an actor. Monitored actors send a down message to all ob-
servers as part of their termination. Unlike exit messages, down messages are always treated
like any other ordinary message. An actor will receive one down message for each time it called
self->monitor (...), even ifit adds a monitor to the same actor multiple times.

actor_ptr worker = ...;
// monitor spawned actor
self->monitor (worker);
// wait until worker exited
receive (
on (atom ("DOWN"), exit_reason::normal) >> [] {
// worker finished computation
bo
on (atom ("DOWN"), arg_match) >> [] (std::uint32_t reason) {
// worker died unexpectedly

25

MANAGEMENT & ERROR DETECTION

8.3 Error Codes

All error codes are defined in the namespace cppa::exit_reason. To obtain a string repre-
sentation of an error code, use cppa: :exit_reason::as_string(uint32_t).

normal 1 Actor finished execution without error
unhandled_exception 2 Actor was killed due to an unhandled exception
_ Indicates that an event-based actor tried to use
unallowed_function call 3 , .
blocking receive calls
, Actor was killed due to an unexpected syn-
unhandled_sync_failure 4
chronous response message
, Actor was killed, because no timeout handler
unhandled_sync_timeout 5

was set and a synchronous message timed out

user_shutdown 16 Actor was killed by a user-generated event
Indicates that a remote actor became unreach-
able, e.g., due to connection error

user_defined 65536 Minimum value for user-defined exit codes

remote_link_unreachable 257

8.4 Attach Cleanup Code to an Actor

Actors can attach cleanup code to other actors. This code is executed immediately if the actor has
already exited. Keep in mind that se1f refers to the currently running actor. Thus, self refers to
the terminating actor and not to the actor that attached a functor to it.

auto worker = spawn(...);
actor_ptr observer = self;
// "monitor" spawned actor
worker—->attach_functor ([observer] (std::uint32_t reason) {
// this callback is invoked from worker
send (observer, atom("DONE"));
}) i
// wait until worker exited
become (
on(atom ("DONE")) >> [] {
// worker terminated
}
) ;

Note: It is possible to attach code to remote actors, but the cleanup code will run on the local
machine.

26

SPAWNING ACTORS

9 Spawning Actors

Actors are created using the function spawn. The easiest way to implement actors is to use
functors, e.g., a free function or lambda expression. The arguments to the functor are passed
to spawn as additional arguments. The function spawn also takes optional flags as template
paremeter. The flag detached causes spawn to create a thread-mapped actor (opt-out of the
cooperative scheduling), the flag 1inked links the newly created actor to its parent, and the flag
monitored automatically adds a monitor to the new actor. Actors that make use of the blocking
API (see Section must be spawned using the flag blocking_api. Flags are concatenated
using the operator +, as shown in the examples below.

#include "cppa/cppa.hpp"
using namespace cppa;
void my_actorl();

void my_actor2 (int argl, const std::string& arg2);
void ugly_duckling();

class my_actor3 : public event_based_actor { /*+ ... */ };
class my_actor4d : public sb_actor<my_actord> {
public: my_actor4 (int some_value) { /* ... */ }
[x ool *x/
}i
int main () {
// spawn function-based actors
auto a0 = spawn (my_actorl);
auto al = spawn<linked> (my_actor2, 42, "hello actor");
auto a2 = spawn<monitored> ([] { /% ... */ });
auto a3 = spawn([] (int) { /* ... =/}, 42);
// spawn thread-mapped actors
auto a4 = spawn<detached> (my_actorl);
auto a5 = spawn<detached + linked>([] { /* ... x/ });
auto a6 = spawn<detached> (my_actor2, 0, "zero");
// spawn class-based actors
auto a7 = spawn<my_actor3>();
auto a8 = spawn<my_actor4, monitored>(42);

// spawn thread-mapped actors using a class

auto a9 = spawn<my_actor4, detached> (42);

// spawn actors that need access to the blocking API
auto b0 = spawn<blocking_api> (ugly_duckling);

Note: spawn (fun, arg0, ...) isnotequal to spawn (std::bind(fun, arg0, ...))!
For example, a call to spawn (fun, self, ...) will pass a pointer to the calling actor to the
newly created actor, as expected, whereas spawn (std: :bind (fun, self, ...)) wrapsthe

type of self into the function wrapper and evaluates se1 f on function invocation. Thus, the actor
will end up having a pointer to itself rather than a pointer to its parent.

27

MESSAGE PRIORITIES

10 Message Priorities

By default, all messages have the same priority and actors ignore priority flags. Actors that should
evaluate priorities must be spawned using the priority_aware flag. This flag causes the actor
to use a priority-aware mailbox implementation. It is not possible to change this implementation
dynamically at runtime.

volid testee () {
// send 'b’ with normal priority
send(self, atom("b"));
// send ’"a’ with high priority
send ({self, message_priority::high}, atom("a"));
// terminate after receiving a ’'b’
become (
on(atom("b")) >> [] {

aout << "received b’ => quit" << endl;
self->quit () ;
bo
on(atom("a")) >> [] {
aout << "received 'a’" << endl;
bo
)i

int main() {
// will print "received ‘b’ => quit"
spawn (testee) ;
await_all_others_done () ;
// will print "received ’'a’" and then "received b’ => quit"
spawn<priority_aware> (testee);
await_all_others_done () ;
shutdown () ;

28

NETWORK TRANSPARENCY

11 Network Transparency

All actor operations as well as sending messages are network transparent. Remote actors are
represented by actor proxies that forward all messages.

11.1 Publishing of Actors

void publish (actor_ptr whom, std::uintl6_t port, const charx addr = 0)

The function pub1ish binds an actor to a given port. It throws network_error if socket related
errors occur or bind_failure if the specified port is already in use. The optional addr param-
eter can be used to listen only to the given IP address. Otherwise, the actor accepts all incoming
connections (INADDR_ANY).

publish (self, 4242);
become (
on(atom("ping"), arg_match) >> [] (int 1) {
return make_cow_tuple (atom("pong"), 1);
}
)i

11.2 Connecting to Remote Actors
actor_ptr remote_actor (const char* host, std::uintl6_t port)

The function remote_actor connects to the actor at given host and port. A network_error is
thrown if the connection failed.

auto pong = remote_actor ("localhost", 4242);
send (pong, atom("ping"), 0);
become (

on(atom("pong"), 10) >> [] {

self->quit () ;

bo

on(atom("pong"), arg_match) >> [] (int 1) {
return make_cow_tuple (atom("ping"), i+1l);

}

29

GROUP COMMUNICATION

12 Group Communication

libcppa supports publish/subscribe-based group communication. Actors can join and leave groups
and send messages to groups.

std::string group_module = ...;

std::string group_id = ...;

auto grp = group::get (group_module, group_id);
self->join (grp);

send (grp, atom("test"));

self->leave (grp);

12.1 Anonymous Groups

Groups created on-the-fly with group: : anonymous () can be used to coordinate a set of work-
ers. Each call to group: : anonymous () returns a new, unique group instance.

12.2 Local Groups

The "1ocal" group module creates groups for in-process communication. For example, a group
for GUI related events could be identified by group: :get ("local", "GUI events"). The
group ID "GUT events" uniquely identifies a singleton group instance of the module "1ocal™.

12.3 Spawn Actors in Groups

The function spawn_in_group can be used to create actors as members of a group. The
function causes the newly created actors to call self->join(...) immediately and before
spawn_in_group returns. The usage of spawn_in_group is equal to spawn, except for an
additional group argument. The group handle is always the first argument, as shown in the exam-
ples below.

void funl () ;
void fun2 (int, float);

class my_actorl : event_based_actor { /x ... *x/ };
class my_actor2 : event_based_actor {
//
my_actor2 (const std::string& str) { /* ... %/ }
}i
//
auto grp = group::get(...);
auto al = spawn_in_group (grp, funl);
auto a2 = spawn_in_group (grp, fun2, 1, 2.0f);
auto a3 = spawn_in_group<my_actorl> (grp) ;
auto a4 = spawn_in_group<my_actor2> (grp, "hello my_actor2!");

30

PLATFORM-INDEPENDENT TYPE SYSTEM

13 Platform-Independent Type System

libcppa provides a fully network transparent communication between actors. Thus, libcppa needs
to serialize and deserialize messages. Unfortunately, this is not possible using the RTTI system of
C++. libcppa uses its own RTTI based on the class uniform_type_info, since itis not possible
to extend std: :type_info.

Unlike std: :type_info::name (), uniform_type_info: :name () is guaranteed to return
the same name on all supported platforms. Furthermore, it allows to create an instance of a type
by name.

// creates a signed, 32 bit integer
cppa::object i = cppa::uniform_typeid<int>()->create();

However, you should rarely if ever need to use object oruniform_type_info.

13.1 User-Defined Data Types in Messages

All user-defined types must be explicitly “announced” so that libcppa can (de)serialize them cor-
rectly, as shown in the example below.

#include "cppa/cppa.hpp"
using namespace cppa;

struct foo { int a; int b; };

int main () {
announce<foo> (&foo::a, &foo::b);
send(self, foo{l,2});
return O;

Without the announce function call, the example program would terminate with an exception,
because libcppa rejects all types without available runtime type information.

announce () takes the class as template parameter and pointers to all members (or getter/setter
pairs) as arguments. This works for all primitive data types and STL compliant containers. See
the announce examples 1 — 4 of the standard distribution for more details.

Obviously, there are limitations. You have to implement serialize/deserialize by yourself if your
class does implement an unsupported data structure. See announce_example_5.cpp in the
examples folder.

31

BLOCKING API

14 Blocking API

Besides event-based actors (the default implementation), /ibcppa also provides context-switching
and thread-mapped actors that can make use of the blocking API. Those actor implementations
are intended to ease migration of existing applications or to implement actors that need to have
access to blocking receive primitives for other reasons.

Event-based actors differ in receiving messages from context-switching and thread-mapped ac-
tors: the former define their behavior as a message handler that is invoked whenever a new
messages arrives in the actor’s mailbox (by using become), whereas the latter use an explicit,
blocking receive function.

14.1 Receiving Messages

The function receive sequentially iterates over all elements in the mailbox beginning with the
first. It takes a partial function that is applied to the elements in the mailbox until an element
was matched by the partial function. An actor calling receive is blocked until it successfully
dequeued a message from its mailbox or an optional timeout occurs.

receive (
on<int> () .when(_x1 > 0) >> //
)

The code snippet above illustrates the use of receive. Note that the partial function passed
to receive is a temporary object at runtime. Hence, using receive inside a loop would cause
creation of a new partial function on each iteration. libcppa provides three predefined receive
loops to provide a more efficient but yet convenient way of defining receive loops.

32

BLOCKING API

//DON’T

for

Gi) A
receive (
//

)

std::vector<int> results;

for (size_t i = 0; i < 10; ++1)
receive (
on<int> () >> [&] (int wvalue)

results.push_back (value);

size_t received = 0;
do {
receive (
others () >> [&] () {
++received;
}
)i
} while (received < 10);

The examples above illustrate the correct usage of the three loops receive_loop, receive_for
.) .until. Itis possible to nest receives and receive loops.

and do_receive (..

receive_loop (

on<int> () >>
receive (

on<float> ()

cout << wvaluel << "

[] (int wvaluel) {

>>
= n

{

{

33

// DO

receive_loop (
//
) ;

std::vector<int> results;
size_t 1 = 0;
receive_for (i, 10) (
on<int> () >> [&] (int value)
results.push_back (value);

size_t received = 0;
do_receive (
others () >> [&] () {
++received;

}

) .until (gref (received) >= 10);

[&] (float value2) {
<< value2 << endl;

BLOCKING API

14.2 Receiving Synchronous Responses
actor_ptr testee = ...; // replies with a string to ’get’

auto future = sync_send(testee, atom("get"));
receive_response (future) (
on_arg_match >> [&] (const std::stringé& str) {
// handle str
}I
after (std::chrono::seconds (30)) >> [&] () |
// handle error
}
) ;

// or:

sync_send(testee, atom("get")) .await (
on_arg_match >> [&] (const std::stringé& str) {
// handle str
br
after (std::chrono::seconds (30)) >> [&] () {
// handle error

34

STRONGLY TYPED ACTORS

15 Strongly Typed Actors

Strongly typed actors provide a convenient way of defining type-safe messaging interfaces. Unlike
“dynamic actors”, typed actors are not allowed to change their behavior at runtime, neither are
typed actors allowed to use guard expressions. When calling become in a strongly typed actor,
the actor will be killed with exit reason unallowed_function_call.

Typed actors use typed_actor_ptr<...> instead of actor_ptr, whereas the template pa-
rameters hold the messaging interface. For example, an actor responding to two integers with a
dobule would use the type t yped_actor_ptr<replies_to<int, int>::with<double>>.

All functions for message passing, linking and monitoring are overloaded to accept both types of
actors. As of version 0.8, strongly typed actors cannot be published and do not support message
priorities (those are planned feature for future releases).

15.1 Spawning Typed Actors

Actors are spawned using the function spawn_typed. The argument to this function call must
be a match expression as shown in the example below, because the runtime of libcppa needs to
evaluate the signature of each message handler.

auto p0 = spawn_typed (
on_arg_match >> [] (int a, int b) {
return static_cast<double> (a) =* b;
bo
on_arg_match >> [] (double a, double b) {
return make_cow_tuple(a * b, a / b);
}
)i
// assign to identical type
using full_type = typed_actor_ptr<
replies_to<int, int>::with<double>,
replies_to<double, double>::with<double, double>

full_type pl = p0;
// assign to subtype
using subtypel = typed_actor_ptr<
replies_to<int, int>::with<double>
>
subtypel p2 = p0;
// assign to another subtype
using subtype2 = typed_actor_ptr<
replies_to<double, double>::with<double, double>
>

subtype2 p3 = p0;

35

STRONGLY TYPED ACTORS

15.2 Class-based Typed Actors

Typed actors can be implemented using a class by inheriting from typed_actor<. . .>, whereas
the template parameter pack denotes the messaging interface. Derived classes have to imple-
mented the pure virtual member function make_behavior, as shown in the example below.

// implementation
class typed_testee : public typed_actor<replies_to<int>::with<bool>> ({

protected:

behavior_type make_behavior () final {
// returning a non-matching expression
// results in a compile-time error

return (
on_arg_match >> [] (int wvalue) {
return value == 42;

i

// instantiation
auto testee = spawn_typed<typed_testee>();

It is worth mentioning that typed_actor implements the member function init () using the
final qualifier. Hence, derived classes are not allowed to override init (). However, typed
actors are allowed to override other member functions such as on_exit (). The return type of
make_behavior is typed_behavior<...>, which is aliased as behavior_type for conve-

nience.

36

COMMON PITFALLS

16 Common Pitfalls

16.1 Event-Based API

e The functions become and handle_response do not block, i.e., always return immedi-
ately. Thus, you should always capture by value in event-based actors, because all refer-
ences on the stack will cause undefined behavior if a lambda is executed.

16.2 Mixing Event-Based and Blocking API

e Blocking libcppa function such as receive will throw an exception if accessed from an
event-based actor.

e Context-switching and thread-mapped actors can use the become APIl. Whenever a non-
event-based actor calls become () for the first time, it will create a behavior stack and
execute it until the behavior stack is empty. Thus, the initial be come blocks until the behavior
stack is empty, whereas all subsequent calls to become will return immediately. Related
functions, e.g., sync_send(...) .then(...), behave the same, as they manipulate the
behavior stack as well.

16.3 Synchronous Messages

e send(self->last_sender (), ...) does notsend aresponse message.

e A handle returned by sync_send represents exactly one response message. Therefore, it
is not possible to receive more than one response message.

e The future returned by sync_send is bound to the calling actor. It is not possible to transfer
such a future to another actor. Calling receive_response or handle_response for a
future bound to another actor is undefined behavior.

16.4 Sending Messages
e send(whom, ...) issyntactic sugar for whom << make_any_tuple(...). Hence, a
message sent via send (whom, self->last_dequeued()) will not yield the expected

result, since it wraps self->1last_dequeued () into another any_tuple instance. The
correct way of forwarding messages is self->forward_to (whom).

37

COMMON PITFALLS

16.5 Sharing

e |t is strongly recommended to not share states between actors. In particular, no actor shall
ever access member variables or member functions of another actor. Accessing shared
memory segments concurrently can cause undefined behavior that is incredibly hard to find
and debug. However, sharing data between actors is fine, as long as the data is immutable
and all actors access the data only via smart pointers such as std: : shared_ptr. Never-
theless, the recommended way of sharing informations is message passing. Sending data
to multiple actors does not result in copying the data several times. Read Section [2]to learn
more about libcppa’s copy-on-write optimization for tuples.

16.6 Constructors of Class-based Actors

e During constructor invocation, self does not point to this. It points to the invoking actor
instead.

e You should not send or receive messages in a constructor or destructor.

38

APPENDIX

17 Appendix

17.1 Class option

Defined in header "cppa/option.hpp".

template<typename T>
class option;

Represents an optional value.

Member types
Member type Definition
type T

Member functions

option ()

Constructs an empty option

Initializes this with value

(
option (T value)
option (const optionég)
option (optioné&é&)

Copy/move construction

option& operator=(const optionég)
option& operator=(optioné&é&)

Copy/move assignment

Observers

bool wvalid()
explicit operator bool ()

Returns true if this has a value

bool empty ()
bool operator! ()

Returns t rue if this does not has a value

const T& get ()
const T& operatorx ()

Access stored value

const T& get_or_else(const T& x)

Returns get () if valid, x otherwise

Modifiers

T& get ()
T& operatorx ()

Access stored value

39

APPENDIX

17.2 Using aout — A Concurrency-safe Wrapper for cout

When using cout from multiple actors, output often appears interleaved. Moreover, using cout
from multiple actors — and thus multiple threads — in parallel should be avoided, since the standard

does not guarantee a thread-safe implementation.

By replacing std: : cout with cppa: :aout, actors can achieve a concurrency-safe text out-
put. The header cppa/cppa.hpp also defines overloads for std: :endl and std: : flush
for aout, but does not support the full range of ostream operations (yet). Each write operation
to aout sends a message to a ‘hidden’ actor (keep in mind, sending messages from actor con-

structors is not safe). This actor only prints lines, unless output is forced using f1ush.

#include <chrono>
#include <cstdlib>
#include "cppa/cppa.hpp"

using namespace cppa;

using std:

int main ()

rendl;

{

std::srand(std::time (0)) ;
for (int i = 1; 1 <= 50; ++i) {
spawn ([1] {

}) i

}

aout << "Hi there! This is actor nr. " << i1 << "!I" << endl;
std::chrono::milliseconds tout{std::rand() % 1000};
delayed_send(self, tout, atom("done"));
receive (others () >> [1] {

aout << "Actor nr. " << 1 << " says goodbye!" << endl;

)i

14

// wait until all other actors we’ve spawned are done

await_

all_others_done();

// done
shutdown () ;
return 0;

40

	First Steps
	Features Overview
	Supported Compilers
	Supported Operating Systems
	Hello World Example

	Copy-On-Write Tuples
	Dynamically Typed Tuples
	Casting Tuples

	Pattern Matching
	Basics
	Reducing Redundancy with ``argmatch'' and ``onargmatch''
	Atoms
	Wildcards
	Guards
	Placeholder Interface
	Examples for Guard Expressions

	Projections and Extractors

	Actors
	The ``Keyword'' self
	Interface

	Sending Messages
	Replying to Messages
	Chaining
	Delaying Messages
	Forwarding Messages

	Receiving Messages
	Class-based actors
	Nesting Receives Using become/unbecome
	Timeouts
	Skipping Messages

	Synchronous Communication
	Error Messages
	Receive Response Messages
	Synchronous Failures and Error Handlers
	Using then to Receive a Response
	Using Functors without Patterns
	Continuations for Event-based Actors

	Management & Error Detection
	Links
	Monitors
	Error Codes
	Attach Cleanup Code to an Actor

	Spawning Actors
	Message Priorities
	Network Transparency
	Publishing of Actors
	Connecting to Remote Actors

	Group Communication
	Anonymous Groups
	Local Groups
	Spawn Actors in Groups

	Platform-Independent Type System
	User-Defined Data Types in Messages

	Blocking API
	Receiving Messages
	Receiving Synchronous Responses

	Strongly Typed Actors
	Spawning Typed Actors
	Class-based Typed Actors

	Common Pitfalls
	Event-Based API
	Mixing Event-Based and Blocking API
	Synchronous Messages
	Sending Messages
	Sharing
	Constructors of Class-based Actors

	Appendix
	Class option
	Using aout – A Concurrency-safe Wrapper for cout

