
libcaf

A C++ library for actor programming

User Manual
libcaf version 0.10

Dominik Charousset

July 24, 2014

Contents

1 Introduction 1

1.1 Actor Model . 1

1.2 Terminology . 1

1.2.1 Actor Address . 1

1.2.2 Actor Handle . 2

1.2.3 Untyped Actors . 2

1.2.4 Typed Actor . 2

1.2.5 Spawning . 2

1.2.6 Monitoring . 2

1.2.7 Link . 2

2 First Steps 3

2.1 Features Overview . 3

2.2 Supported Compilers . 3

2.3 Supported Operating Systems . 3

2.4 Hello World Example . 4

3 Pattern Matching 5

3.1 Basics . 5

3.2 Reducing Redundancy with “arg match” and “on arg match” 6

3.3 Atoms . 6

3.4 Wildcards . 7

3.5 Projections and Extractors . 8

4 Actors 9

4.1 Implicit self Pointer . 9

4.2 Interface . 10

5 Sending Messages 11

5.1 Replying to Messages . 12

5.2 Delaying Messages . 12

5.3 Forwarding Messages in Untyped Actors . 13

6 Receiving Messages 14

6.1 Class-based actors . 14

6.2 Nesting Receives Using become/unbecome . 17

6.3 Timeouts . 18

6.4 Skipping Messages . 19

7 Synchronous Communication 20

7.1 Error Messages . 20

7.2 Receive Response Messages . 21

7.3 Synchronous Failures and Error Handlers . 21

7.3.1 Continuations for Event-based Actors . 22

8 Management & Error Detection 23

8.1 Links . 23

8.2 Monitors . 23

8.3 Error Codes . 24

8.4 Attach Cleanup Code to an Actor . 24

9 Spawning Actors 25

10 Message Priorities 26

11 Network Transparency 27

11.1 Publishing of Actors . 27

11.2 Connecting to Remote Actors . 27

12 Network IO 28

12.1 Spawning Brokers . 28

12.2 Broker Interface . 29

12.3 Broker-related Message Types . 30

13 Group Communication 31

13.1 Anonymous Groups . 31

13.2 Local Groups . 31

13.3 Remote Groups . 31

13.4 Spawning Actors in Groups . 32

14 Platform-Independent Type System 33

14.1 User-Defined Data Types in Messages . 33

15 Blocking API 34

15.1 Receiving Messages . 34

15.2 Receiving Synchronous Responses . 36

16 Strongly Typed Actors 37

16.1 Spawning Typed Actors . 37

16.2 Class-based Typed Actors . 38

17 Common Pitfalls 40

17.1 Event-Based API . 40

17.2 Synchronous Messages . 40

17.3 Sending Messages . 40

17.4 Sharing . 40

17.5 Constructors of Class-based Actors . 40

18 Appendix 41

18.1 Class option . 41

18.2 Using aout – A Concurrency-safe Wrapper for cout 42

18.3 Migration Guides . 43

18.3.1 0.8⇒ 0.9 . 43

18.3.2 0.9⇒ 0.10 (libcppa⇒ libcaf) . 44

INTRODUCTION

1 Introduction

Before diving into the API of libcaf, we would like to take the opportunity to discuss the con-
cepts behind libcaf and to explain the terminology used in this manual.

1.1 Actor Model

The actor model describes concurrent entities—actors—that do not share state and communicate
only via message passing. By decoupling concurrently running software components via message
passing, the actor model avoids race conditions by design. Actors can create—“spawn”—new
actors and monitor each other to build fault-tolerant, hierarchical systems. Since message passing
is network transparent, the actor model applies to both concurrency and distribution.

When dealing with dozens of cores, mutexes, semaphores and other threading primitives are
the wrong level of abstraction. Implementing applications on top of those primitives has proven
challenging and error-prone. Additionally, mutex-based implementations can cause queueing and
unmindful access to (even distinct) data from separate threads in parallel can lead to false sharing:
both decreasing performance significantly, up to the point that an application actually runs slower
when adding more cores.

The actor model has gained momentum over the last decade due to its high level of abstraction
and its ability to make efficient use of multicore and multiprocessor machines. However, the
actor model has not yet been widely adopted in the native programming domain. With libcaf,
we contribute a library for actor programming in C++ as open source software to ease native
development of concurrent as well as distributed systems. In this regard, libcaf follows the
C++ philosophy “building the highest abstraction possible without sacrificing performance”.

1.2 Terminology

You will find that libcaf has not simply adopted exiting implementations based on the actor
model such as Erlang or the Akka library. Instead, libcaf aims to provide a modern C++ API
allowing for type-safe as well as dynamically typed messaging. Hence, most aspects of our system
are familiar to developers having experience with other actor systems, but there are also slight
differences in terminology. However, neither libcaf nor this manual require any foreknowledge.

1.2.1 Actor Address

In libcaf, each actor has a (network-wide) unique logical address that can be used to identify
and monitor it. However, the address can not be used to send a message to an actor. This
limitation is due to the fact that the address does not contain any type information about the actor.
Hence, it would not be safe to send it any message, because the actor might use a strictly typed
messaging interface not accepting the given message.

1

INTRODUCTION

1.2.2 Actor Handle

An actor handle contains the address of an actor along with its type information. In order to send
an actor a message, one needs to have a handle to it – the address alone is not sufficient. The
distinction between handles and addresses – which is unique to libcaf when comparing it to
other actor systems – is a consequence of the design decision to support both untyped and typed
actors.

1.2.3 Untyped Actors

An untyped actor does not constrain the type of messages it receives, i.e., a handle to an untyped
actor accepts any kind of message. That does of course not mean that untyped actors must
handle all possible types of messages. Choosing typed vs untyped actors is mostly a matter of
taste. Untyped actors allow developers to build prototypes faster, while typed actors allow the
compiler to fetch more errors at compile time.

1.2.4 Typed Actor

A typed actor defines its messaging interface, i.e., both input and output types, in its type. This
allows the compiler to check message types statically.

1.2.5 Spawning

“Spawning” an actor means to create and run a new actor.

1.2.6 Monitoring

A monitored actor sends a “down message” to all actors monitoring it as part of its termination.
This allows actors to supervise other actors and to take measures when one of the supervised
actors failed, i.e., terminated with a non-normal exit reason.

1.2.7 Link

A link is bidirectional connection between two actors. Each actor sends an “exit message” to all
of its links as part of its termination. Unlike down messages (cf. 1.2.6), the default behavior for
received exit messages causes the receiving actor to terminate for the same reason if the link
has failed, i.e., terminated with a non-normal exit reason. This allows developers to create a set
of actors with the guarantee that either all or no actors are alive. The default behavior can be
overridden, i.e., exit message can be “trapped”. When trapping exit messages, they are received
as any other ordinary message and can be handled by the actor.

2

FIRST STEPS

2 First Steps

To compile libcaf, you will need CMake and a C++11 compiler. To get and compile the sources,
open a terminal (on Linux or Mac OS X) and type:

git clone https://github.com/actor-framework/actor-framework
cd actor-framework
./configure
make
make install [as root, optional]

It is recommended to run the unit tests as well:

make test

Please submit a bug report that includes (a) your compiler version, (b) your OS, and (c) the content
of the file build/Testing/Temporary/LastTest.log if an error occurs.

2.1 Features Overview

• Lightweight, fast and efficient actor implementations
• Network transparent messaging
• Error handling based on Erlang’s failure model
• Pattern matching for messages as internal DSL to ease development
• Thread-mapped actors for soft migration of existing applications
• Publish/subscribe group communication

2.2 Supported Compilers

• GCC ≥ 4.7
• Clang ≥ 3.2

2.3 Supported Operating Systems

• Linux
• Mac OS X
• Note for MS Windows: libcaf relies on C++11 features such as unrestricted unions. We

will support this platform as soon as Microsoft’s compiler implements all required C++11
features. In the meantime, libcaf can be used with MinGW.

3

FIRST STEPS

2.4 Hello World Example

#include <string>
#include <iostream>

#include "caf/all.hpp"

using namespace std;
using namespace caf;

behavior mirror(event_based_actor* self) {
// return the (initial) actor behavior
return {

// a handler for messages containing a single string
// that replies with a string
[=](const string& what) -> string {

// prints "Hello World!" via aout
// (thread-safe cout wrapper)
aout(self) << what << endl;
// terminates this actor
// (’become’ otherwise loops forever)
self->quit();
// reply "!dlroW olleH"
return string(what.rbegin(), what.rend());

}
};

}

void hello_world(event_based_actor* self, const actor& buddy) {
// send "Hello World!" to our buddy ...
self->sync_send(buddy, "Hello World!").then(

// ... wait for a response ...
[=](const string& what) {

// ... and print it
aout(self) << what << endl;

}
);

}

int main() {
// create a new actor that calls ’mirror()’
auto mirror_actor = spawn(mirror);
// create another actor that calls ’hello_world(mirror_actor)’;
spawn(hello_world, mirror_actor);
// wait until all other actors we have spawned are done
await_all_actors_done();
// run cleanup code before exiting main
shutdown();

}

4

PATTERN MATCHING

3 Pattern Matching

Actor programming implies a message passing paradigm. This means that defining message
handlers is a recurring task. The easiest and most natural way to specify such message handlers
is pattern matching. Unfortunately, C++ does not provide any pattern matching facilities. Hence,
we provide an internal domain-specific language to match incoming messages.

3.1 Basics

A match expression begins with a call to the function on, which returns an intermediate object
providing operator>>. The right-hand side of the operator denotes a callback, usually a lambda
expression, that should be invoked if a tuple matches the types given to on, as shown in the
example below.

on<int>() >> [](int i) { /*...*/ }
on<int, float>() >> [](int i, float f) { /*...*/ }
on<int, int, int>() >> [](int a, int b, int c) { /*...*/ }

The result of operator>> is a match statement. A message handler can consist of any number
of match statements. At most one callback is invoked, since the evaluation stops at the first match.

message_handler fun {
on<int>() >> [](int i) {

// case1
},
on<int>() >> [](int i) {

// case2; never invoked, since case1 always matches first
}

};

The function “on” can be used in two ways. Either with template parameters only or with function
parameters only. The latter version deduces all types from its arguments and matches for both
type and value. To match for any value of a given type, “val” can be used, as shown in the
following example.

on(42) >> [](int i) { assert(i == 42); }
on("hello world") >> [] { /* ... */ }
on("print", val<std::string>) >> [](const std::string& what) {

// ...
}

Note: The given callback can have less arguments than the pattern. But it is only allowed to skip
arguments from left to right.

on<int, float, double>() >> [](double) { /*...*/ } // ok
on<int, float, double>() >> [](float, double) { /*...*/ } // ok
on<int, float, double>() >> [](int, float, double) { /*...*/ } // ok

on<int, float, double>() >> [](int i) { /*...*/ } // compiler error

5

PATTERN MATCHING

3.2 Reducing Redundancy with “arg_match” and “on_arg_match”

Our previous examples always used the most verbose form, which is quite redundant, since you
have to type the types twice – as template parameter and as argument type for the lambda. To
avoid such redundancy, arg_match can be used as last argument to the function on. This causes
the compiler to deduce all further types from the signature of the given callback.

on<int, int>() >> [](int a, int b) { /*...*/ }
// is equal to:
on(arg_match) >> [](int a, int b) { /*...*/ }

Note that the second version does call onwithout template parameters. Furthermore, arg_match
must be passed as last parameter. If all types should be deduced from the callback signature,
on_arg_match can be used. It is equal to on(arg_match). However, when using a pattern to
initialize the behavior of an actor, on_arg_match is used implicitly whenever a functor is passed
without preceding it with an on clause.

on_arg_match >> [](const std::string& str) { /*...*/ }

3.3 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments, performs
a predefined operation and returns the result. It cannot determine an operation, such as multiply
or add, by receiving two operands. Thus, the operation must be encoded into the message. The
Erlang programming language introduced an approach to use non-numerical constants, so-called
atoms, which have an unambiguous, special-purpose type and do not have the runtime overhead
of string constants. Atoms are mapped to integer values at compile time in libcaf. This map-
ping is guaranteed to be collision-free and invertible, but limits atom literals to ten characters and
prohibits special characters. Legal characters are “_0-9A-Za-z” and the whitespace character.
Atoms are created using the constexpr function atom, as the following example illustrates.

on(atom("add"), arg_match) >> [](int a, int b) { /*...*/ },
on(atom("multiply"), arg_match) >> [](int a, int b) { /*...*/ },
// ...

Note: The compiler cannot enforce the restrictions at compile time, except for a length check. The
assertion atom("!?") != atom("?!") is not true, because each invalid character is mapped
to the whitespace character.

6

PATTERN MATCHING

3.4 Wildcards

The type anything can be used as wildcard to match any number of any types. A pattern created
by on<anything>() or its alias others() is useful to define a default case. For patterns
defined without template parameters, the constexpr value any_vals can be used as function
argument. The constant any_vals is of type anything and is nothing but syntactic sugar for
defining patterns.

on<int, anything>() >> [](int i) {
// tuple with int as first element

},
on(any_vals, arg_match) >> [](int i) {

// tuple with int as last element
// "on(any_vals, arg_match)" is equal to "on(anything{}, arg_match)"

},
others() >> [] {

// everything else (default handler)
// "others()" is equal to "on<anything>()" and "on(any_vals)"

}

7

PATTERN MATCHING

3.5 Projections and Extractors

Projections perform type conversions or extract data from a given input. If a callback expects an
integer but the received message contains a string, a projection can be used to perform a type
conversion on-the-fly. This conversion should be free of side-effects and, in particular, shall not
throw exceptions, because a failed projection is not an error. A pattern simply does not match if a
projection failed. Let us have a look at a simple example.

auto intproj = [](const string& str) -> option<int> {
char* endptr = nullptr;
int result = static_cast<int>(strtol(str.c_str(), &endptr, 10));
if (endptr != nullptr && *endptr == ’\0’) return result;
return {};

};
message_handler fun {

on(intproj) >> [](int i) {
// case 1: successfully converted a string

},
on_arg_match >> [](const string& str) {

// case 2: str is not an integer
}

};

The lambda intproj is a string⇒ int projection, but note that it does not return an integer.
It returns option<int>, because the projection is not guaranteed to always succeed. An empty
option indicates, that a value does not have a valid mapping to an integer. A pattern does not
match if a projection failed.

Note: Functors used as projection must take exactly one argument and must return a value.
The types for the pattern are deduced from the functor’s signature. If the functor returns an
option<T>, then T is deduced.

8

ACTORS

4 Actors

libcaf provides several actor implementations, each covering a particular use case. The class
local_actor is the base class for all implementations, except for (remote) proxy actors. Hence,
local_actor provides a common interface for actor operations like trapping exit messages or
finishing execution. The default actor implementation in libcaf is event-based. Event-based
actors have a very small memory footprint and are thus very lightweight and scalable. Context-
switching actors are used for actors that make use of the blocking API (see Section 15), but do
not need to run in a separate thread. Context-switching and event-based actors are scheduled
cooperatively in a thread pool. Thread-mapped actors can be used to opt-out of this cooperative
scheduling.

4.1 Implicit self Pointer

When using a function or functor to implement an actor, the first argument can be used to capture
a pointer to the actor itself. The type of this pointer is event_based_actor* per default and
blocking_actor* when using the blocking_api flag. When dealing with typed actors, the
types are typed_event_based_actor<...>* and typed_blocking_actor<...>*.

9

ACTORS

4.2 Interface

class local_actor;

Member functions

quit(uint32_t reason = normal) Finishes execution of this actor

Observers

bool trap_exit() Checks whether this actor traps exit messages

message last_dequeued()
Returns the last message that was dequeued from
the actor’s mailbox
Note: Only set during callback invocation

actor_addr last_sender()
Returns the sender of the last dequeued message
Note: Only set during callback invocation

vector<group> joined_groups() Returns all subscribed groups

Modifiers

void trap_exit(bool enabled) Enables or disables trapping of exit messages
void join(const group& g) Subscribes to group g
void leave(const group& g) Unsubscribes group g

void on_sync_failure(auto fun)

Sets a handler, i.e., a functor taking no argu-
ments, for unexpected synchronous response mes-
sages (default action is to kill the actor for reason
unhandled_sync_failure)

void on_sync_timeout(auto fun)

Sets a handler, i.e., a functor taking no ar-
guments, for timed_sync_send timeout mes-
sages (default action is to kill the actor for reason
unhandled_sync_timeout)

void monitor(actor whom)
Adds a unidirectional monitor to whom (see Section
8.2)

void demonitor(actor whom) Removes a monitor from whom

bool has_sync_failure_handler()
Checks wheter this actor has a user-defined sync fail-
ure handler

10

SENDING MESSAGES

5 Sending Messages

Messages can be sent by using the member function send or send_tuple. The variadic tem-
plate function send has the following signature.

template<typename... Args>
void send(actor whom, Args&&... what);

The variadic template pack what... is converted to a dynamically typed tuple (see Section ??)
and then enqueued to the mailbox of whom.

Using the function send is more compact, but does not have any other benefit. However, note
that you should not use send if you already have an instance of message, because it creates a
new tuple containing the old one.

void some_fun(event_based_actor* self) {
actor other = spawn(...);
auto msg = make_message(1, 2, 3);
self->send(other, msg); // oops, creates a new tuple containing msg
self->send_tuple(other, msg); // ok

}

11

SENDING MESSAGES

5.1 Replying to Messages

The return value of a message handler is used as response message. Actors can also use the
result of a sync_send to answer to a request, as shown below.

void client(event_based_actor* self, const actor& master) {
become (

on("foo", arg_match) >> [=](const string& request) {
return self->sync_send(master, atom("bar"), request).then(

on_arg_match >> [=](const std::string& response) {
return response;

}
);

}
);

};

5.2 Delaying Messages

Messages can be delayed, e.g., to implement time-based polling strategies, by using one of
delayed_send, delayed_send_tuple, delayed_reply, or delayed_reply_tuple. The
following example illustrates a polling strategy using delayed_send.

behavior poller(event_based_actor* self) {
self->delayed_send(self, std::chrono::seconds(1), atom("poll"));
return {

on(atom("poll")) >> [] {
// poll a resource
// ...
// schedule next polling
self->delayed_send(self, std::chrono::seconds(1), atom("poll"));

}
};

}

12

SENDING MESSAGES

5.3 Forwarding Messages in Untyped Actors

The member function forward_to forwards the last dequeued message to an other actor. For-
warding a synchronous message will also transfer responsibility for the request, i.e., the receiver
of the forwarded message can reply as usual and the original sender of the message will receive
the response. The following diagram illustrates forwarding of a synchronous message from actor
B to actor C.

A B C
--(sync_send)-->	
	--(forward_to)->
X	---\
	<--/
<-------------(reply)--------------	
X	
---\	
	handle
	response
<--/	
X

The forwarding is completely transparent to actor C, since it will see actor A as sender of the
message. However, actor A will see actor C as sender of the response message instead of actor
B and thus could recognize the forwarding by evaluating self->last_sender().

13

RECEIVING MESSAGES

6 Receiving Messages

The current behavior of an actor is its response to the next incoming message and includes (a)
sending messages to other actors, (b) creation of more actors, and (c) setting a new behavior.

An event-based actor, i.e., the default implementation in libcaf, uses become to set its behav-
ior. The given behavior is then executed until it is replaced by another call to become or the actor
finishes execution.

6.1 Class-based actors

A class-based actor is a subtype of event_based_actor and must implement the pure virtual
member function make_behavior returning the initial behavior.

class printer : public event_based_actor {
behavior make_behavior() override {

return {
others() >> [] {

cout << to_string(last_dequeued()) << endl;
}

};
}

};

Another way to implement class-based actors is provided by the class sb_actor (“State-Based
Actor”). This base class simply returns init_state (defined in the subclass) from its implemen-
tation for make_behavior.

struct printer : sb_actor<printer> {
behavior init_state {

others() >> [] {
cout << to_string(last_dequeued()) << endl;

}
};

};

Note that sb_actor uses the Curiously Recurring Template Pattern. Thus, the derived class must
be given as template parameter. This technique allows sb_actor to access the init_state

member of a derived class. The following example illustrates a more advanced state-based actor
that implements a stack with a fixed maximum number of elements.

14

RECEIVING MESSAGES

class fixed_stack : public sb_actor<fixed_stack> {

friend class sb_actor<fixed_stack>;

size_t max_size;

vector<int> data;

behavior full;
behavior filled;
behavior empty;

behavior& init_state = empty;

public:

fixed_stack(size_t max) : max_size(max) {
assert(max_size > 0);
full = (

on(atom("push"), arg_match) >> [=](int) { /* discard */ },
on(atom("pop")) >> [=]() -> tuple<atom_value, int> {

auto result = data.back();
data.pop_back();
if (data.empty()) become(empty);
else become(filled);
return {atom("ok"), result};

}
);
filled = (

on(atom("push"), arg_match) >> [=](int what) {
data.push_back(what);
if (data.size() == max_size) become(full);

},
on(atom("pop")) >> [=]() -> tuple<atom_value, int> {

auto result = data.back();
data.pop_back();
if (data.empty()) become(empty);
return {atom("ok"), result};

}
);
empty = (

on(atom("push"), arg_match) >> [=](int what) {
data.push_back(what);
if (data.size() == max_size) become(full);
else become(filled);

},
on(atom("pop")) >> [=] {

return atom("failure");
}

);

15

RECEIVING MESSAGES

}

};

16

RECEIVING MESSAGES

6.2 Nesting Receives Using become/unbecome

Since become does not block, an actor has to manipulate its behavior stack to achieve nested
receive operations. An actor can set a new behavior by calling become with the keep_behavior
policy to be able to return to its previous behavior later on by calling unbecome, as shown in the
example below.

// receives {int, float} sequences
behavior testee(event_based_actor* self) {
return {

[=](int value1) {
self->become (

// the keep_behavior policy stores the current behavior
// on the behavior stack to be able to return to this
// behavior later on by calling unbecome()
keep_behavior,
[=](float value2) {

cout << value1 << " => " << value2 << endl;
// restore previous behavior
self->unbecome();

}
);

}
};

}

An event-based actor finishes execution with normal exit reason if the behavior stack is empty
after calling unbecome. The default policy of become is discard_behavior that causes an
actor to override its current behavior. The policy flag must be the first argument of become.

Note: the message handling in libcaf is consistent among all actor implementations: un-
matched messages are never implicitly discarded if no suitable handler was found. Hence, the
order of arrival is not important in the example above. This is unlike other event-based implemen-
tations of the actor model such as Akka for instance.

17

RECEIVING MESSAGES

6.3 Timeouts

A behavior set by become is invoked whenever a new messages arrives. If no message ever
arrives, the actor would wait forever. This might be desirable if the actor only provides a service
and should not do anything else. But often, we need to be able to recover if an expected messages
does not arrive within a certain time period. The following examples illustrates the usage of after
to define a timeout.

#include <chrono>
#include <iostream>
#include "cppa/cppa.hpp"

using endl;

behavior eager_actor(event_based_actor* self) {
return {

[](int i) { /* ... */ },
[](float i) { /* ... */ },
others() >> [] { /* ... */ },
after(chrono::seconds(10)) >> [] {

aout(self) << "received nothing within 10 seconds..." << endl;
// ...

}
};

}

Callbacks given as timeout handler must have zero arguments. Any number of patterns can pre-
cede the timeout definition, but “after” must always be the final statement. Using a zero-duration
timeout causes the actor to scan its mailbox once and then invoke the timeout immediately if no
matching message was found.

libcaf supports timeouts using minutes, seconds, milliseconds and microseconds.
However, note that the precision depends on the operating system and your local work load.
Thus, you should not depend on a certain clock resolution.

18

RECEIVING MESSAGES

6.4 Skipping Messages

Unmatched messages are skipped automatically by libcaf’s runtime system. This is true for all
actor implementations. To allow actors to skip messages manually, skip_message can be used.
This is in particular useful whenever an actor switches between behaviors, but wants to use a
default rule created by others() to filter messages that are not handled by any of its behaviors.

The following example illustrates a simple server actor that dispatches requests to workers. Af-
ter receiving an ’idle’ message, it awaits a request that is then forwarded to the idle worker.
Afterwards, the server returns to its initial behavior, i.e., awaits the next ’idle’ message. The
server actor will exit for reason user_defined whenever it receives a message that is neither a
request, nor an idle message.

behavior server(event_based_actor* self) {
auto die = [=] { self->quit(exit_reason::user_defined); };
return {

on(atom("idle")) >> [=] {
auto worker = last_sender();
self->become (

keep_behavior,
on(atom("request")) >> [=] {

// forward request to idle worker
self->forward_to(worker);
// await next idle message
self->unbecome();

},
on(atom("idle")) >> skip_message,
others() >> die

);
},
on(atom("request")) >> skip_message,
others() >> die

};
}

19

SYNCHRONOUS COMMUNICATION

7 Synchronous Communication

libcaf supports both asynchronous and synchronous communication. The member functions
sync_send and sync_send_tuple send synchronous request messages.

template<typename... Args>
__unspecified__ sync_send(actor whom, Args&&... what);

__unspecified__ sync_send_tuple(actor whom, message what);

template<typename Duration, typename... Args>
__unspecified__ timed_sync_send(actor whom,

Duration timeout,
Args&&... what);

template<typename Duration, typename... Args>
__unspecified__ timed_sync_send_tuple(actor whom,

Duration timeout,
message what);

A synchronous message is sent to the receiving actor’s mailbox like any other asynchronous
message. The response message, on the other hand, is treated separately.

The difference between sync_send and timed_sync_send is how timeouts are handled. The
behavior of sync_send is analogous to send, i.e., timeouts are specified by using after(...)
statements (see 6.3). When using timed_sync_send function, after(...) statements are
ignored and the actor will receive a sync_timeout_msg after the given duration instead.

7.1 Error Messages

When using synchronous messaging, libcaf’s runtime environment will send ...

• if the receiver is not alive:
sync_exited_msg { actor_addr source; std::uint32_t reason; };

• if a message send by timed_sync_send timed out: sync_timeout_msg

20

SYNCHRONOUS COMMUNICATION

7.2 Receive Response Messages

When sending a synchronous message, the response handler can be passed by either using
then (event-based actors) or await (blocking actors).

void foo(event_based_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, atom("get")).then(

on_arg_match >> [=](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [=]() {

// handle error
}

);
);

Similar to become, the then function modifies an actor’s behavior stack. However, it is used as
“one-shot handler” and automatically returns to the previous behavior afterwards.

7.3 Synchronous Failures and Error Handlers

An unexpected response message, i.e., a message that is not handled by given behavior, will
invoke the actor’s on_sync_failure handler. The default handler kills the actor by calling
self->quit(exit_reason::unhandled_sync_failure). The handler can be overridden
by calling self->on_sync_failure(/*...*/).

Unhandled timeout messages trigger the on_sync_timeout handler. The default handler kills
the actor for reason exit_reason::unhandled_sync_failure. It is possible set both error
handlers by calling self->on_sync_timeout_or_failure(/*...*).

void foo(event_based_actor* self, actor testee) {
// testee replies with a string to ’get’
// set handler for unexpected messages
self->on_sync_failure = [] {

aout << "received: " << to_string(self->last_dequeued()) << endl;
};
// set handler for timeouts
self->on_sync_timeout = [] {

aout << "timeout occured" << endl;
};
// set response handler by using "then"
timed_sync_send(testee, std::chrono::seconds(30), atom("get")).then(

[=](const std::string& str) { /* handle str */ }
);

21

SYNCHRONOUS COMMUNICATION

7.3.1 Continuations for Event-based Actors

libcaf supports continuations to enable chaining of send/receive statements. The functions
then returns a helper object offering the member function continue_with, which takes a func-
tor f without arguments. After receiving a message, f is invoked if and only if the received
messages was handled successfully, i.e., neither sync_failure nor sync_timeout occurred.

void foo(event_based_actor* self) {
actor d_or_s = ...; // replies with either a double or a string
sync_send(d_or_s, atom("get")).then(

[=](double value) { /* functor f1 */ },
[=](const string& value) { /* functor f2*/ }

).continue_with([=] {
// this continuation is invoked in both cases
// *after* f1 or f2 is done, but *not* in case
// of sync_failure or sync_timeout

});

22

MANAGEMENT & ERROR DETECTION

8 Management & Error Detection

libcaf adapts Erlang’s well-established fault propagation model. It allows to build actor subsys-
tem in which either all actors are alive or have collectively failed.

8.1 Links

Linked actors monitor each other. An actor sends an exit message to all of its links as part of its
termination. The default behavior for actors receiving such an exit message is to die for the same
reason, if the exit reason is non-normal. Actors can trap exit messages to handle them manually.

actor worker = ...;
// receive exit messages as regular messages
self->trap_exit(true);
// monitor spawned actor
self->link_to(worker);
// wait until worker exited
self->become (

[](const exit_msg& e) >> [=] {
if (e.reason == exit_reason::normal) {

// worker finished computation
else {

// worker died unexpectedly
}

}
);

8.2 Monitors

A monitor observes the lifetime of an actor. Monitored actors send a down message to all ob-
servers as part of their termination. Unlike exit messages, down messages are always treated
like any other ordinary message. An actor will receive one down message for each time it called
self->monitor(...), even if it adds a monitor to the same actor multiple times.

actor worker = ...;
// monitor spawned actor
self->monitor(worker);
// wait until worker exited
self->become (
on(const down_msg& d) >> [] {

if (d.reason == exit_reason::normal) {
// worker finished computation

} else {
// worker died unexpectedly

}
}

);

23

MANAGEMENT & ERROR DETECTION

8.3 Error Codes

All error codes are defined in the namespace cppa::exit_reason. To obtain a string repre-
sentation of an error code, use cppa::exit_reason::as_string(uint32_t).

normal 1 Actor finished execution without error
unhandled_exception 2 Actor was killed due to an unhandled exception

unhandled_sync_failure 4
Actor was killed due to an unexpected syn-
chronous response message

unhandled_sync_timeout 5
Actor was killed, because no timeout handler
was set and a synchronous message timed out

user_shutdown 16 Actor was killed by a user-generated event

remote_link_unreachable 257
Indicates that a remote actor became unreach-
able, e.g., due to connection error

user_defined 65536 Minimum value for user-defined exit codes

8.4 Attach Cleanup Code to an Actor

Actors can attach cleanup code to other actors. This code is executed immediately if the actor has
already exited. Keep in mind that self refers to the currently running actor. Thus, self refers to
the terminating actor and not to the actor that attached a functor to it.

auto worker = spawn(...);
actor observer = self;
// "monitor" spawned actor
worker->attach_functor([observer](std::uint32_t reason) {

// this callback is invoked from worker
anon_send(observer, atom("DONE"));

});
// wait until worker exited
self->become (

on(atom("DONE")) >> [] {
// worker terminated

}
);

Note: It is possible to attach code to remote actors, but the cleanup code will run on the local
machine.

24

SPAWNING ACTORS

9 Spawning Actors

Actors are created using the function spawn. The easiest way to implement actors is to use func-
tors, e.g., a free function or lambda expression. The arguments to the functor are passed to spawn
as additional arguments. The function spawn also takes optional flags as template parameter.
The flag detached causes spawn to create a thread-mapped actor (opt-out of the cooperative
scheduling), the flag linked links the newly created actor to its parent – not available on top-level
spawn – and the flag monitored automatically adds a monitor to the new actor. Actors that make
use of the blocking API (see Section 15) must be spawned using the flag blocking_api. Flags
are concatenated using the operator +, as shown in the examples below.

#include "cppa/cppa.hpp"

using namespace cppa;

void my_actor1();
void my_actor2(event_based_actor*, int arg1, const std::string& arg2);
void ugly_duckling();

class my_actor3 : public event_based_actor { /* ... */ };
class my_actor4 : public sb_actor<my_actor4> {

public: my_actor4(int some_value) { /* ... */ }
/* ... */

};

// whenever we want to link to or monitor a spawned actor,
// we have to spawn it using the self pointer, otherwise
// we can use the free function ’spawn’ (top-level spawn)
void server(event_based_actor* self) {

// spawn function-based actors
auto a0 = spawn(my_actor1);
auto a1 = self->spawn<linked>(my_actor2, 42, "hello actor");
auto a2 = self->spawn<monitored>([] { /* ... */ });
auto a3 = spawn([](int) { /* ... */ }, 42);
// spawn thread-mapped actors
auto a4 = spawn<detached>(my_actor1);
auto a5 = self->spawn<detached + linked>([] { /* ... */ });
auto a6 = spawn<detached>(my_actor2, 0, "zero");
// spawn class-based actors
auto a7 = spawn<my_actor3>();
auto a8 = self->spawn<my_actor4, monitored>(42);
// spawn thread-mapped actors using a class
auto a9 = spawn<my_actor4, detached>(42);
// spawn actors that need access to the blocking API
auto aa = self->spawn<blocking_api>(ugly_duckling);
// compiler error: my_actor2 captures the implicit
// self pointer as event_based_actor* and thus cannot
// be spawned using blocking_api flag
/*-auto ab = self->spawn<blocking_api>(my_actor2);-*/

}

25

MESSAGE PRIORITIES

10 Message Priorities

By default, all messages have the same priority and actors ignore priority flags. Actors that should
evaluate priorities must be spawned using the priority_aware flag. This flag causes the actor
to use a priority-aware mailbox implementation. It is not possible to change this implementation
dynamically at runtime.

behavior testee(event_based_actor* self) {
// send ’b’ with normal priority
self->send(self, atom("b"));
// send ’a’ with high priority
self->send(message_priority::high, self, atom("a"));
// terminate after receiving a ’b’
return {

on(atom("b")) >> [=] {
aout(self) << "received ’b’ => quit" << endl;
self->quit();

},
on(atom("a")) >> [=] {

aout(self) << "received ’a’" << endl;
},

};
}

int main() {
// will print "received ’b’ => quit"
spawn(testee);
await_all_actors_done();
// will print "received ’a’" and then "received ’b’ => quit"
spawn<priority_aware>(testee);
await_all_actors_done();
shutdown();

}

26

NETWORK TRANSPARENCY

11 Network Transparency

All actor operations as well as sending messages are network transparent. Remote actors are
represented by actor proxies that forward all messages. All functions shown in this section can be
accessed by including the header "caf/io/all.hpp" and live in the namespace caf::io.

11.1 Publishing of Actors

void publish(actor whom, std::uint16_t port, const char* addr = 0)

The function publish binds an actor to a given port. It throws network_error if socket related
errors occur or bind_failure if the specified port is already in use. The optional addr param-
eter can be used to listen only to the given IP address. Otherwise, the actor accepts all incoming
connections (INADDR_ANY).

io::publish(self, 4242);
self->become (

on(atom("ping"), arg_match) >> [](int i) {
return make_message(atom("pong"), i);

}
);

11.2 Connecting to Remote Actors

actor remote_actor(const char* host, std::uint16_t port)

The function remote_actor connects to the actor at given host and port. A network_error is
thrown if the connection failed.

auto pong = remote_actor("localhost", 4242);
self->send(pong, atom("ping"), 0);
self->become (

on(atom("pong"), 10) >> [=] {
self->quit();

},
on(atom("pong"), arg_match) >> [=](int i) {

return make_message(atom("ping"), i+1);
}

);

27

NETWORK IO

12 Network IO

When communicating to other services in the network, sometimes low-level socket IO is inevitable.
For this reason, libcaf provides brokers. A broker is an event-based actor running in the
middleman that multiplexes socket IO. It can maintain any number of acceptors and connections.
Since the broker runs in the middleman, implementations should be careful to consume as little
time as possible in message handlers. Any considerable amount work should outsourced by
spawning new actors (or maintaining worker actors). All functions shown in this section can be
accessed by including the header "caf/io/all.hpp" and live in the namespace caf::io.

12.1 Spawning Brokers

Brokers are spawned using the function spawn_io and always use functor-based implementa-
tions capturing the self pointer of type broker*. For convenience, spawn_io_server can be
used to spawn a new broker listening to a local port and spawn_io_client can be used to
spawn a new broker that connects to given host and port or uses existing IO streams.

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io(F fun, Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_client(F fun,
input_stream_ptr in,
output_stream_ptr out,
Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_client(F fun, string host, uint16_t port, Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_server(F fun, uint16_t port, Ts&&... args);

28

NETWORK IO

12.2 Broker Interface

class broker;

Data Types

enum policy flag { at least, at most, exactly }

Member Functions

void receive_policy(
connection_handle hdl,
policy_flag policy,
size_t buffer_size)

Modifies the receive policy for the connection
identified by hdl. This will cause the middle-
man to enqueue the next new_data_msg af-
ter at least, at most, or exactly buffer_size
bytes have been read

void write(connection_handle hdl,
size_t num_bytes, const void* buf)

Sends data

void write(connection_handle hdl,
const util::buffer& buf)

Sends data

void write(connection_handle hdl,
util::buffer&& buf)

Sends data

template<typename F, typename... Ts>
actor fork(F fun,
connection_handle hdl, Ts&&... args)

Spawns a new broker that takes ownership of
given connection

size_t num_connections() Returns the number of open connections
connection_handle add_connection(
input_stream_ptr in,
output_stream_ptr out)

Adds a new connection from input and output
stream

connection_handle add_connection(
stream_ptr sptr)

Adds a new connection from an IO stream

connection_handle add_tcp_connection(
native_socket_type tcp_sockfd)

Adds a new connection from a native TCP
socket descriptor

accept_handle add_acceptor(
acceptor_uptr ptr)

Adds a new acceptor

accept_handle add_tcp_acceptor(
native_socket_type tcp_sockfd)

Adds a new acceptor from a native TCP socket
descriptor

29

NETWORK IO

12.3 Broker-related Message Types

Brokers, just like any other dynamically typed actor, can receive messages of any type. However,
it also receives system messages from the middleman:

struct new_connection_msg {
accept_handle source;
connection_handle handle;

};

A new_connection_msg is received whenever a new incoming connection (identified by the
handle field) has been accepted for one of the broker’s accept handles (identified by the source
field).

struct new_data_msg {
connection_handle handle;
util::buffer buf;

};

A new_data_msg is received whenever data on a connection is ready. The data can be accessed
as buffer object (see ??). The amount of data, i.e., how often this message is received, can be
configured using the brokers receive policy (see ??).

It is worth mentioning that the buffer is re-used whenever possible. This means, as long as the
broker does not create any new references to the message by copying it, the middleman will
always use only a single buffer per connection.

struct connection_closed_msg {
connection_handle handle;

};

A connection_closed_msg informs the broker that one of its connections has been closed.

struct acceptor_closed_msg {
accept_handle handle;

};

A acceptor_closed_msg informs the broker that of its acceptors has been closed.

30

GROUP COMMUNICATION

13 Group Communication

libcaf supports publish/subscribe-based group communication. Actors can join and leave
groups and send messages to groups.

std::string group_module = ...;
std::string group_id = ...;
auto grp = group::get(group_module, group_id);
self->join(grp);
self->send(grp, atom("test"));
self->leave(grp);

13.1 Anonymous Groups

Groups created on-the-fly with group::anonymous() can be used to coordinate a set of work-
ers. Each call to group::anonymous() returns a new, unique group instance.

13.2 Local Groups

The "local" group module creates groups for in-process communication. For example, a group
for GUI related events could be identified by group::get("local", "GUI events"). The
group ID "GUI events" uniquely identifies a singleton group instance of the module "local".

13.3 Remote Groups

To deploy groups in a network, one host can act as group server by publishing its local groups at
any given port:

void publish_local_groups(std::uint16_t port, const char* addr)

By calling group::get("remote", "<group>@<host>:<port>"), other hosts are now able
to connect to a remotely running group. Please note that the group communication is no longer
available once the server disconnects. This implementation uses N-times unicast underneath. It
is worth mentioning that user-implemented groups can be build on top of IP multicast or overlay
technologies such as Scribe to achieve better performance or reliability.

31

GROUP COMMUNICATION

13.4 Spawning Actors in Groups

The function spawn_in_group can be used to create actors as members of a group. The func-
tion causes the newly created actors to call join(...) immediately and before spawn_in_group
returns. The usage of spawn_in_group is equal to spawn, except for an additional group argu-
ment. The group handle is always the first argument, as shown in the examples below.

void fun1();
void fun2(int, float);
class my_actor1 : event_based_actor { /* ... */ };
class my_actor2 : event_based_actor {

// ...
my_actor2(const std::string& str) { /* ... */ }

};
// ...
auto grp = group::get(...);
auto a1 = spawn_in_group(grp, fun1);
auto a2 = spawn_in_group(grp, fun2, 1, 2.0f);
auto a3 = spawn_in_group<my_actor1>(grp);
auto a4 = spawn_in_group<my_actor2>(grp, "hello my_actor2!");

32

PLATFORM-INDEPENDENT TYPE SYSTEM

14 Platform-Independent Type System

libcaf provides a fully network transparent communication between actors. Thus, libcaf
needs to serialize and deserialize messages. Unfortunately, this is not possible using the RTTI
system of C++. libcaf uses its own RTTI based on the class uniform_type_info, since it
is not possible to extend std::type_info.

Unlike std::type_info::name(), uniform_type_info::name() is guaranteed to return
the same name on all supported platforms. Furthermore, it allows to create an instance of a type
by name.

// creates a signed, 32 bit integer
cppa::object i = cppa::uniform_typeid<int>()->create();

However, you should rarely if ever need to use object or uniform_type_info.

14.1 User-Defined Data Types in Messages

All user-defined types must be explicitly “announced” so that libcaf can (de)serialize them
correctly, as shown in the example below.

#include "cppa/cppa.hpp"
using namespace cppa;

struct foo { int a; int b; };

int main() {
announce<foo>(&foo::a, &foo::b);
// ... foo can now safely be used in messages ...

}

Without the announce function call, the example program would terminate with an exception,
because libcaf rejects all types without available runtime type information.

announce() takes the class as template parameter and pointers to all members (or getter/setter
pairs) as arguments. This works for all primitive data types and STL compliant containers. See
the announce examples 1 – 4 of the standard distribution for more details.

Obviously, there are limitations. You have to implement serialize/deserialize by yourself if your
class does implement an unsupported data structure. See announce_example_5.cpp in the
examples folder.

33

BLOCKING API

15 Blocking API

Besides event-based actors (the default implementation), libcaf also provides context-switching
and thread-mapped actors that can make use of the blocking API. Those actor implementations
are intended to ease migration of existing applications or to implement actors that need to have
access to blocking receive primitives for other reasons.

Event-based actors differ in receiving messages from context-switching and thread-mapped ac-
tors: the former define their behavior as a message handler that is invoked whenever a new
messages arrives in the actor’s mailbox (by using become), whereas the latter use an explicit,
blocking receive function.

15.1 Receiving Messages

The function receive sequentially iterates over all elements in the mailbox beginning with the
first. It takes a message handler that is applied to the elements in the mailbox until an element
was matched by the handler. An actor calling receive is blocked until it successfully dequeued
a message from its mailbox or an optional timeout occurs.

self->receive (
on<int>() >> // ...

);

The code snippet above illustrates the use of receive. Note that the message handler passed
to receive is a temporary object at runtime. Hence, using receive inside a loop would cause
creation of a new handler on each iteration. libcaf provides three predefined receive loops to
provide a more efficient but yet convenient way of defining receive loops.

34

BLOCKING API

//DON’T //DO

for (;;) {
receive (

// ...
);

}

receive_loop (
// ...

);

std::vector<int> results;
for (size_t i = 0; i < 10; ++i) {

receive (
on<int>() >> [&](int value) {

results.push_back(value);
}

);
}

std::vector<int> results;
size_t i = 0;
receive_for(i, 10) (

on<int>() >> [&](int value) {
results.push_back(value);

}
);

size_t received = 0;
do {

receive (
others() >> [&]() {

++received;
}

);
} while (received < 10);

size_t received = 0;
do_receive (

others() >> [&]() {
++received;

}
).until([&] { return received >= 10; });

The examples above illustrate the correct usage of the three loops receive_loop, receive_for
and do_receive(...).until. It is possible to nest receives and receive loops.

self->receive_loop (
on<int>() >> [&](int value1) {

self->receive (
on<float>() >> [&](float value2) {

cout << value1 << " => " << value2 << endl;
}

);
}

);

35

BLOCKING API

15.2 Receiving Synchronous Responses

Analogous to sync_send(...).then(...) for event-based actors, blocking actors can use
sync_send(...).await(...).

void foo(blocking_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, atom("get")).await(

[&](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [&]() {

// handle error
}

);
}

36

STRONGLY TYPED ACTORS

16 Strongly Typed Actors

Strongly typed actors provide a convenient way of defining type-safe messaging interfaces. Unlike
untyped actorsd, typed actors are not allowed to use guard expressions. When calling become in
a strongly typed actor, all message handlers from the typed interface must be set.

Typed actors use handles of type typed_actor<...> rather than actor, whereas the template
parameters hold the messaging interface. For example, an actor responding to two integers with a
dobule would use the type typed_actor<replies_to<int, int>::with<double>>. All
functions for message passing, linking and monitoring are overloaded to accept both types of
actors.

16.1 Spawning Typed Actors

Typed actors are spawned using the function spawn_typed. The argument to this function call
must be a match expression as shown in the example below, because the runtime of libcaf
needs to evaluate the signature of each message handler.

auto p0 = spawn_typed(
on_arg_match >> [](int a, int b) {
return static_cast<double>(a) * b;

},
on_arg_match >> [](double a, double b) {

return std::make_tuple(a * b, a / b);
}

);
// assign to identical type
using full_type = typed_actor<

replies_to<int, int>::with<double>,
replies_to<double, double>::with<double, double>

>;
full_type p1 = p0;
// assign to subtype
using subtype1 = typed_actor<

replies_to<int, int>::with<double>
>;

subtype1 p2 = p0;
// assign to another subtype
using subtype2 = typed_actor<

replies_to<double, double>::with<double, double>
>;

subtype2 p3 = p0;

37

STRONGLY TYPED ACTORS

16.2 Class-based Typed Actors

Typed actors are spawned using the function spawn_typed and define their message pass-
ing interface as list of replies_to<...>::with<...> statements. This interface is used in
(1) typed_event_based_actor<...>, which is the base class for typed actors, (2) the han-
dle type typed_actor<...>, and (3) typed_behavior<...>, i.e., the behavior definition for
typed actors. Since this is rather redundant, the actor handle provides definitions for the behavior
as well as the base class, as shown in the example below. It is worth mentioning that all typed
actors always use the event-based implementation, i.e., there is no typed actor implementation
providing a blocking API.

struct shutdown_request { };
struct plus_request { int a; int b; };
struct minus_request { int a; int b; };

typedef typed_actor<replies_to<plus_request>::with<int>,
replies_to<minus_request>::with<int>,
replies_to<shutdown_request>::with<void>>

calculator_type;

calculator_type::behavior_type
typed_calculator(calculator_type::pointer self) {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

self->quit();
}

};
}

class typed_calculator_class : public calculator_type::base {
protected: behavior_type make_behavior() override {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

quit();
}

};
}

};

38

STRONGLY TYPED ACTORS

void tester(event_based_actor* self, const calculator_type& testee) {
self->link_to(testee);
// will be invoked if we receive an unexpected response message
self->on_sync_failure([=] {

aout(self) << "AUT (actor under test) failed" << endl;
self->quit(exit_reason::user_shutdown);

});
// first test: 2 + 1 = 3
self->sync_send(testee, plus_request{2, 1}).then(

[=](int r1) {
assert(r1 == 3);
// second test: 2 - 1 = 1
self->sync_send(testee, minus_request{2, 1}).then(

[=](int r2) {
assert(r2 == 1);
// both tests succeeded
aout(self) << "AUT (actor under test) "

<< "seems to be ok"
<< endl;

self->send(testee, shutdown_request{});
}

);
}

);
}

int main() {
// announce custom message types
announce<shutdown_request>();
announce<plus_request>(&plus_request::a, &plus_request::b);
announce<minus_request>(&minus_request::a, &minus_request::b);
// test function-based impl
spawn(tester, spawn_typed(typed_calculator));
await_all_actors_done();
// test class-based impl
spawn(tester, spawn_typed<typed_calculator_class>());
await_all_actors_done();
// done
shutdown();
return 0;

}

39

COMMON PITFALLS

17 Common Pitfalls

17.1 Event-Based API

• The functions become and handle_response do not block, i.e., always return imme-
diately. Thus, one should always capture by value in lambda expressions, because all
references on the stack will cause undefined behavior if the lambda expression is executed.

17.2 Synchronous Messages

• A handle returned by sync_send represents exactly one response message. Therefore, it
is not possible to receive more than one response message.

• The handle returned by sync_send is bound to the calling actor. It is not possible to transfer
a handle to a response to another actor.

17.3 Sending Messages

• send(whom, ...) is defined as send_tuple(whom, make_message(...)). Hence,
a message sent via send(whom, self->last_dequeued()) will not yield the expected
result, since it wraps self->last_dequeued() into another message instance. The
correct way of forwarding messages is self->forward_to(whom).

17.4 Sharing

• It is strongly recommended to not share states between actors. In particular, no actor shall
ever access member variables or member functions of another actor. Accessing shared
memory segments concurrently can cause undefined behavior that is incredibly hard to find
and debug. However, sharing data between actors is fine, as long as the data is immutable
and its lifetime is guaranteed to outlive all actors. The simplest way to meet the lifetime
guarantee is by storing the data in smart pointers such as std::shared_ptr. Neverthe-
less, the recommended way of sharing informations is message passing. Sending data to
multiple actors does not necessarily result in copying the data several times. Read Section
?? to learn more about libcaf’s copy-on-write optimization for tuples.

17.5 Constructors of Class-based Actors

• You should not try to send or receive messages in a constructor or destructor, because the
actor is not fully initialized at this point.

40

APPENDIX

18 Appendix

18.1 Class option

Defined in header "cppa/option.hpp".

template<typename T>
class option;

Represents an optional value.

Member types
Member type Definition
type T

Member Functions
option() Constructs an empty option
option(T value) Initializes this with value
option(const option&)
option(option&&)

Copy/move construction

option& operator=(const option&)
option& operator=(option&&)

Copy/move assignment

Observers

bool valid()
explicit operator bool()

Returns true if this has a value

bool empty()
bool operator!()

Returns true if this does not has a value

const T& get()
const T& operator*()

Access stored value

const T& get_or_else(const T& x) Returns get() if valid, x otherwise

Modifiers

T& get()
T& operator*()

Access stored value

41

APPENDIX

18.2 Using aout – A Concurrency-safe Wrapper for cout

When using cout from multiple actors, output often appears interleaved. Moreover, using cout

from multiple actors – and thus from multiple threads – in parallel should be avoided regardless,
since the standard does not guarantee a thread-safe implementation.

By replacing std::cout with cppa::aout, actors can achieve a concurrency-safe text out-
put. The header cppa/cppa.hpp also defines overloads for std::endl and std::flush
for aout, but does not support the full range of ostream operations (yet). Each write operation to
aout sends a message to a ‘hidden’ actor (keep in mind, sending messages from actor construc-
tors is not safe). This actor only prints lines, unless output is forced using flush. The example
below illustrates printing of lines of text from multiple actors (in random order).

#include <chrono>
#include <cstdlib>
#include <iostream>
#include "cppa/cppa.hpp"

using namespace cppa;
using std::endl;

int main() {
std::srand(std::time(0));
for (int i = 1; i <= 50; ++i) {

spawn<blocking_api>([i](blocking_actor* self) {
aout(self) << "Hi there! This is actor nr. "

<< i << "!" << endl;
std::chrono::milliseconds tout{std::rand() % 1000};
self->delayed_send(self, tout, atom("done"));
self->receive(others() >> [i, self] {

aout(self) << "Actor nr. "
<< i << " says goodbye!" << endl;

});
});

}
// wait until all other actors we’ve spawned are done
await_all_actors_done();
// done
shutdown();
return 0;

}

42

APPENDIX

18.3 Migration Guides

The guides in this section document all possibly breaking changes in the library for that last ver-
sions of libcaf.

18.3.1 0.8⇒ 0.9

Version 0.9 included a lot of changes and improvements in its implementation, but it also made
breaking changes to the API.

self has been removed

This is the biggest library change since the initial release. The major problem with this keyword-
like identifier is that it must have a single type as it’s implemented as a thread-local variable. Since
there are so many different kinds of actors (event-based or blocking, untyped or typed), self
needs to perform type erasure at some point, rendering it ultimately useless. Instead of a thread-
local pointer, you can now use the first argument in functor-based actors to ”catch” the self pointer
with proper type information.

actor_ptr has been replaced

libcaf now distinguishes between handles to actors, i.e., typed_actor<...> or simply actor,
and addresses of actors, i.e., actor_addr. The reason for this change is that each actor has
a logical, (network-wide) unique address, which is used by the networking layer of libcaf.
Furthermore, for monitoring or linking, the address is all you need. However, the address is
not sufficient for sending messages, because it doesn’t have any type information. The function
last_sender() now returns the address of the sender. This means that previously valid code
such as send(last_sender(), ...) will cause a compiler error. However, the recommended
way of replying to messages is to return the result from the message handler.

The API for typed actors is now similar to the API for untyped actors

The APIs of typed and untyped actors have been harmonized. Typed actors can now be published
in the network and also use all operations untyped actors can.

43

APPENDIX

18.3.2 0.9⇒ 0.10 (libcppa⇒ libcaf)

The first release under the new name libcaf is an overhaul of the entire library. Some classes
have been renamed or relocated, others have been removed. The purpose of this refactoring
was to make the library easier to grasp and to make its API more consistent. All classes now
live in the namespace caf and all headers have the top level folder “caf” instead of “cppa”. For
example, #include "cppa/actor.hpp" becomes #include "caf/actor.hpp". Further,
the convenience header to get all parts of the user API is now "caf/all.hpp". The networking
has been separated from the core library. To get the networking components, simply include
"caf/io/all.hpp" and use the namespace caf::io, e.g., caf::io::remote_actor.

Version 0.10 still includes the header cppa/cppa.hpp to make the transition process for users
easier and to not break existing code right away. The header defines the namespace cppa as
an alias for caf. Furthermore, it provides implementations or type aliases for renamed or re-
moved classes such as cow_tuple. You won’t get any warning about deprecated headers with
0.10. However, we will add this warnings in the next library version and remove deprecated code
eventually.

Even when using the backwards compatibility header, the new library has breaking changes. For
instance, guard expressions have been removed entirely. The reasoning behind this decision is
that we already have projections to modify the outcome of a match. Guard expressions add little
expressive power to the library but a whole lot of code that is hard to maintain in the long run due
to its complexity. Using projections to not only perform type conversions but also to restrict values
is the more natural choice.

The following table summarizes the changes made to the API.

44

APPENDIX

Change Explanation

any_tuple => message

This type is only being used to pass a message
from one actor to another. Hence, message is
the logical name.

partial_function =>

message_handler

Technically, it still is a partial function, but
wanted to emphasize its use case in the library.

cow_tuple => X

We want to provide a streamlined, simple API.
Shipping a full tuple abstraction with the library
does not fit into this philosophy. The removal
of cow_tuple implies the removal of related
functions such as tuple_cast.

cow_ptr => X

This pointer class is an implementation detail
of message and should not live in the global
namespace in the first place. It also had the
wrong name, because it is intrusive.

X => message_builder

This new class can be used to create mes-
sages dynamically. For example, the content
of a vector can be used to create a message
using a series of append calls.

accept_handle,
connection_handle,
publish, remote_actor,
max_msg_size, typed_publish,
typed_remote_actor,
publish_local_groups,
new_connection_msg,
new_data_msg,
connection_closed_msg,
acceptor_closed_msg

These classes concern I/O functionality and
have thus been moved to caf::io.

45

	Introduction
	Actor Model
	Terminology
	Actor Address
	Actor Handle
	Untyped Actors
	Typed Actor
	Spawning
	Monitoring
	Link

	First Steps
	Features Overview
	Supported Compilers
	Supported Operating Systems
	Hello World Example

	Pattern Matching
	Basics
	Reducing Redundancy with ``argmatch'' and ``onargmatch''
	Atoms
	Wildcards
	Projections and Extractors

	Actors
	Implicit self Pointer
	Interface

	Sending Messages
	Replying to Messages
	Delaying Messages
	Forwarding Messages in Untyped Actors

	Receiving Messages
	Class-based actors
	Nesting Receives Using become/unbecome
	Timeouts
	Skipping Messages

	Synchronous Communication
	Error Messages
	Receive Response Messages
	Synchronous Failures and Error Handlers
	Continuations for Event-based Actors

	Management & Error Detection
	Links
	Monitors
	Error Codes
	Attach Cleanup Code to an Actor

	Spawning Actors
	Message Priorities
	Network Transparency
	Publishing of Actors
	Connecting to Remote Actors

	Network IO
	Spawning Brokers
	Broker Interface
	Broker-related Message Types

	Group Communication
	Anonymous Groups
	Local Groups
	Remote Groups
	Spawning Actors in Groups

	Platform-Independent Type System
	User-Defined Data Types in Messages

	Blocking API
	Receiving Messages
	Receiving Synchronous Responses

	Strongly Typed Actors
	Spawning Typed Actors
	Class-based Typed Actors

	Common Pitfalls
	Event-Based API
	Synchronous Messages
	Sending Messages
	Sharing
	Constructors of Class-based Actors

	Appendix
	Class option
	Using aout – A Concurrency-safe Wrapper for cout
	Migration Guides
	0.8 0.9
	0.9 0.10 (libcppa libcaf)

